Finding Hamiltonian paths in tournaments on clusters

被引:0
|
作者
Chun-Hsi Huang
Sanguthevar Rajasekaran
Laurence Tianruo Yang
Xin He
机构
[1] University of Connecticut,Department of Computer Science and Engineering
[2] St. Francis Xavier University,Department of Computer Science
[3] State University of New York at Buffalo,Department of Computer Science and Engineering
来源
Cluster Computing | 2006年 / 9卷
关键词
Cluster computing; Tournaments; Hamiltonian path; Parallel computing; Graph applications;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents a general methodology for the communication-efficient parallelization of graph algorithms using the divide-and-conquer approach and shows that this class of problems can be solved in cluster environments with good communication efficiency. Specifically, the first practical parallel algorithm, based on a general coarse-grained model, for finding Hamiltonian paths in tournaments is presented. On any such parallel machines, this algorithm uses only (3log p+1), where p is the number of processors, communication rounds, which is independent of the tournament size, and can reuse the existing linear-time algorithm in the sequential setting. For theoretical completeness, the algorithm is revised for fine-grained models, where the ratio of computation and communication throughputs is low or the local memory size, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\frac{N}{p})$$\end{document}, of each individual processor is extremely limited \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\frac{N}{p} \ge p^\epsilon,$$\end{document} for any \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon > 0)$$\end{document}, solving the problem with O(log p) communication rounds, while the hidden constant grows with the scalability factor 1/∊. Experiments have been carried out on a Linux cluster of 32 Sun Ultra5 computers and an SGI Origin 2000 with 32 R10000 processors. The algorithm performance on the Linux Cluster reaches 75% of the performance on the SGI Origin 2000 when the tournament size is about one million.
引用
收藏
页码:345 / 353
页数:8
相关论文
共 50 条
  • [1] Finding Hamiltonian paths in tournaments on clusters
    Huang, Chun-Hsi
    Rajasekaran, Sanguthevar
    Yang, Laurence Tianruo
    He, Xin
    [J]. CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2006, 9 (03): : 345 - 353
  • [2] THE MAXIMUM NUMBER OF HAMILTONIAN PATHS IN TOURNAMENTS
    ALON, N
    [J]. COMBINATORICA, 1990, 10 (04) : 319 - 324
  • [3] Strong tournaments with the fewest Hamiltonian paths
    Moon, J. W.
    Yang, Laura L. M.
    [J]. UTILITAS MATHEMATICA, 2007, 72 : 193 - 198
  • [4] On the maximum number of Hamiltonian paths in tournaments
    Adler, I
    Alon, N
    Ross, SM
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2001, 18 (03) : 291 - 296
  • [5] THE COMPLEXITY OF FINDING GENERALIZED PATHS IN TOURNAMENTS
    HELL, P
    ROSENFELD, M
    [J]. JOURNAL OF ALGORITHMS, 1983, 4 (04) : 303 - 309
  • [6] A note on the number of Hamiltonian paths in strong tournaments
    Busch, AH
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2006, 13 (01):
  • [7] Antidirected Hamiltonian paths and directed cycles in tournaments
    El Sahili, Amine
    Aad, Maria Abi
    [J]. DISCRETE MATHEMATICS, 2018, 341 (07) : 2018 - 2027
  • [8] About the number of oriented Hamiltonian paths and cycles in tournaments
    El Sahili, Amine
    Hanna, Zeina Ghazo
    [J]. JOURNAL OF GRAPH THEORY, 2023, 102 (04) : 684 - 701
  • [9] EDGE-DISJOINT HAMILTONIAN PATHS AND CYCLES IN TOURNAMENTS
    THOMASSEN, C
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1982, 45 (JUL) : 151 - 168
  • [10] POLYNOMIAL ALGORITHMS FOR FINDING CYCLES AND PATHS IN BIPARTITE TOURNAMENTS
    MANOUSSAKIS, Y
    TUZA, Z
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 1990, 3 (04) : 537 - 543