The existence of infinitely many homoclinic doubling bifurcations from some codimension 3 homoclinic orbits

被引:0
|
作者
Kokubu H. [1 ]
Naudot V. [1 ]
机构
[1] Department of Mathematics, Faculty of Science, Kyoto University
基金
日本学术振兴会;
关键词
Codimension; Homoclinic doubling bifurcation; Homoclinic orbit; Inclination-flip of weak type;
D O I
10.1007/BF02227490
中图分类号
学科分类号
摘要
An inclination-flip homoclinic orbit of weak type on ℝ3 is a homoclinic orbit given as the intersection of a special one-dimensional C2-weak stable manifold and the one-dimensional unstable manifold of a hyperbolic singularity with three real eigenvalues. In this paper, we show that in a generic unfolding of such a homoclinic orbit, there appear curves in the parameter space that correspond to ordinary inclination-flip homoclinic orbit of order N for any integer N. As a consequence, there exist infinitely many homoclinic doubling bifurcation curves emanating from the codimension three degenerate point corresponding to the inclination flip homoclinic orbit of weak type. © 1997 Plenum Publishing Corporation.
引用
收藏
页码:445 / 462
页数:17
相关论文
共 50 条