A Cutting Plane Method for Solving Quasimonotone Variational Inequalities

被引:0
|
作者
P. Marcotte
D.L. Zhu
机构
[1] DIRO and CRT,
[2] Université de Montréal,undefined
[3] CRT,undefined
[4] Université de Montréal,undefined
[5] School of Management,undefined
[6] Fudan Univ.,undefined
关键词
variational inequalities; cutting planes; analytic centers; quasimonotonicity;
D O I
暂无
中图分类号
学科分类号
摘要
We present an iterative algorithm for solving variational inequalities under the weakest monotonicity condition proposed so far. The method relies on a new cutting plane and on analytic centers.
引用
收藏
页码:317 / 324
页数:7
相关论文
共 50 条
  • [1] A cutting plane method for solving quasimonotone variational inequalities
    Marcotte, P
    Zhu, DL
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2001, 20 (03) : 317 - 324
  • [2] A New Inertial Subgradient Extragradient method for Solving Quasimonotone Variational Inequalities
    Rehman, Habib Ur
    Kumam, Wiyada
    Sombut, Kamonrat
    [J]. THAI JOURNAL OF MATHEMATICS, 2021, 19 (03): : 981 - 992
  • [3] A reconsideration on convergence of the extra-gradient method for solving quasimonotone variational inequalities
    Zhu, Li-Jun
    Yin, Tzu-Chien
    [J]. OPTIMIZATION, 2024,
  • [4] A relaxed cutting plane algorithm for solving fuzzy variational inequalities
    Hu, CF
    [J]. APPROXIMATION, OPTIMIZATION AND MATHEMATICAL ECONOMICS, 2001, : 159 - 164
  • [5] Solving quasimonotone and non-monotone variational inequalities
    Uzor, V. A.
    Alakoya, T. O.
    Mewomo, O. T.
    Gibali, A.
    [J]. MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2023, 98 (03) : 461 - 498
  • [6] Solving quasimonotone and non-monotone variational inequalities
    V. A. Uzor
    T. O. Alakoya
    O. T. Mewomo
    A. Gibali
    [J]. Mathematical Methods of Operations Research, 2023, 98 : 461 - 498
  • [7] On Quasimonotone Variational Inequalities
    I. V. Konnov
    [J]. Journal of Optimization Theory and Applications, 1998, 99 : 165 - 181
  • [8] AN APPROXIMATION SCHEME FOR SOLVING QUASI-VARIATIONAL INCLUSIONS AND QUASIMONOTONE VARIATIONAL INEQUALITIES
    Yu, Youli
    Chen, Kun
    Zhu, Li-Jun
    [J]. UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2022, 84 (03): : 41 - 52
  • [9] On quasimonotone variational inequalities
    Aussel, D
    Hadjisavvas, N
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2004, 121 (02) : 445 - 450
  • [10] On quasimonotone variational inequalities
    Konnov, IV
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1998, 99 (01) : 165 - 181