Anisotropic compact stellar model of embedding class-I satisfying Karmarkar’s condition in Vaidya and Tikekar spheroidal geometry

被引:0
|
作者
Shyam Das
Ranjan Sharma
Koushik Chakraborty
Lipi Baskey
机构
[1] P. D. Women’s College,Department of Physics
[2] Cooch Behar Panchanan Barma University,Department of Physics
[3] Government College of Education,Department of Physics
[4] Government General Degree College at Kushmandi,Department of Mathematics
来源
关键词
Compact star; Anisotropy; Exact solutions; Karmarkar’s Condition;
D O I
暂无
中图分类号
学科分类号
摘要
We present a class of solutions for a spherically symmetric anisotropic matter distribution in Vaidya and Tikekar spheroidal geometry. Making use of the Vaidya and Tikekar (VT) metric ansatz (J Astrophys Astron 3:325, 1982) for one of the metric functions grr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_{rr}$$\end{document}, we obtain the unknown metric function gtt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_{tt}$$\end{document} by utilizing the Karmakar’s embedding condition which makes the master equation tractable. The model parameters are fixed by utilizing the matching conditions of the interior spacetime and the exterior Schwarzschild solution at the boundary of the star where the radial pressure vanishes. The closed-form interior solution of the Einstein field equations thus obtained is shown to be capable of describing ultra-compact stellar objects where anisotropy might develop. The current estimated masses and radii of some other pulsars are utilized to show that the developed model meets all the requirements of a realistic star. The stability of the model is analyzed. The dependence of the curvature parameter K of the VT model, which characterizes a departure from homogeneous spherical distribution, is also investigated.
引用
收藏
相关论文
共 17 条
  • [1] Anisotropic compact stellar model of embedding class-I satisfying Karmarkar's condition in Vaidya and Tikekar spheroidal geometry
    Das, Shyam
    Sharma, Ranjan
    Chakraborty, Koushik
    Baskey, Lipi
    [J]. GENERAL RELATIVITY AND GRAVITATION, 2020, 52 (10)
  • [2] Models of compact stars of embedding class one for anisotropic distributions satisfying Karmarkar condition
    Pandya, D. M.
    Thomas, V. O.
    [J]. CANADIAN JOURNAL OF PHYSICS, 2019, 97 (03) : 337 - 344
  • [3] Compact stellar model with vanishing complexity under Vaidya–Tikekar background geometry
    Shyam Das
    Megandhren Govender
    Robert S. Bogadi
    [J]. The European Physical Journal C, 84
  • [4] Compact stellar model with vanishing complexity under Vaidya-Tikekar background geometry
    Das, Shyam
    Govender, Megandhren
    Bogadi, Robert S.
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2024, 84 (01):
  • [5] An analytical anisotropic compact stellar model of embedding class I
    Baskey, Lipi
    Das, Shyam
    Rahaman, Farook
    [J]. MODERN PHYSICS LETTERS A, 2021, 36 (05)
  • [6] A comparative study on generalized model of anisotropic compact star satisfying the Karmarkar condition
    Bhar, Piyali
    Singh, Ksh. Newton
    Sarkar, Nayan
    Rahaman, Farook
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2017, 77 (09):
  • [7] A comparative study on generalized model of anisotropic compact star satisfying the Karmarkar condition
    Piyali Bhar
    Ksh. Newton Singh
    Nayan Sarkar
    Farook Rahaman
    [J]. The European Physical Journal C, 2017, 77
  • [8] A Generic Embedding Class-I Model via Karmarkar Condition in f(R, T) Gravity
    Zubair, M.
    Waheed, Saira
    Javaid, Hina
    [J]. ADVANCES IN ASTRONOMY, 2021, 2021
  • [9] Anisotropic star in Vaidya-Tikekar model admitting MIT bag model equation of state in pseudo-spheroidal geometry
    Saha, A.
    Goswami, K. B.
    Chattopadhyay, P. K.
    [J]. ASTROPHYSICS AND SPACE SCIENCE, 2021, 366 (10)
  • [10] Anisotropic star in Vaidya-Tikekar model admitting MIT bag model equation of state in pseudo-spheroidal geometry
    A. Saha
    K. B. Goswami
    P. K. Chattopadhyay
    [J]. Astrophysics and Space Science, 2021, 366