On k-dimensional graphs and their bases

被引:7
|
作者
Peter S. Buczkowski
Gary Chartrand
Christopher Poisson
Ping Zhang
机构
[1] Western Michigan University,Department of Mathematics and Statistics
关键词
resolving set; dimension; basis;
D O I
10.1023/A:1025745406160
中图分类号
学科分类号
摘要
引用
收藏
页码:9 / 15
页数:6
相关论文
共 50 条
  • [1] On randomly k-dimensional graphs
    Jannesari, Mohsen
    Omoomi, Behnaz
    APPLIED MATHEMATICS LETTERS, 2011, 24 (10) : 1625 - 1629
  • [2] Characterization of Randomly k-Dimensional Graphs
    Jannesari, Mohsen
    Omoomi, Behnaz
    ARS COMBINATORIA, 2016, 127 : 357 - 372
  • [3] ON THE COVERAGE OF K-DIMENSIONAL SPACE BY K-DIMENSIONAL SPHERES
    HALL, P
    ANNALS OF PROBABILITY, 1985, 13 (03): : 991 - 1002
  • [4] ON CONSTRUCTING THE RELATIVE NEIGHBORHOOD GRAPHS IN EUCLIDEAN K-DIMENSIONAL SPACES
    SU, TH
    CHANG, RC
    COMPUTING, 1991, 46 (02) : 121 - 130
  • [6] CONCEPT OF K-DIMENSIONAL DIVERGENCE
    DUMMEL, S
    MATHEMATISCHE NACHRICHTEN, 1968, 38 (5-6) : 309 - &
  • [7] Approximation of k-dimensional maps
    Turygin, YA
    TOPOLOGY AND ITS APPLICATIONS, 2004, 139 (1-3) : 227 - 235
  • [8] Enabling skip graphs to process K-Dimensional range queries in a mobile sensor network
    Brault, Gregory J.
    Augeri, Christopher J.
    Mullins, Barry E.
    Baldwin, Rusty O.
    Mayer, Christopher B.
    SIXTH IEEE INTERNATIONAL SYMPOSIUM ON NETWORK COMPUTING AND APPLICATIONS, PROCEEDINGS, 2007, : 273 - +
  • [9] Constructions for k-Dimensional Golomb Arrays
    Luo, Liang
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2013, 10 (10) : 2442 - 2444
  • [10] Limits of k-dimensional poset sequences
    Correa, Ricardo Cordeiro
    Hoppen, Carlos
    Sampaio, Rudini Menezes
    DISCRETE APPLIED MATHEMATICS, 2018, 245 : 208 - 219