On the tautological ring of a Jacobian modulo rational equivalence

被引:0
|
作者
Baohua Fu
Fabien Herbaut
机构
[1] Université de NANTES,C.N.R.S., Labo. J. Leray, Faculté des sciences
[2] Université du Sud - Toulon - Var,IUFM NICE/Laboratoire IMATH
来源
Geometriae Dedicata | 2007年 / 129卷
关键词
Tautological ring; Chow ring; Jacobian; Linear systems; 14C25; 14K12;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Chow ring with rational coefficients of the Jacobian of a curve. Assume D is a divisor in a base point free \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g^r_d$$\end{document} of the curve such that the canonical divisor K is a multiple of the divisor D. We find relations between tautological cycles. We give applications for curves having a degree d covering of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{P}}^1$$\end{document} whose ramification points are all of order d, and then for hyperelliptic curves.
引用
收藏
页码:145 / 153
页数:8
相关论文
共 50 条