Tautological ring;
Chow ring;
Jacobian;
Linear systems;
14C25;
14K12;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We consider the Chow ring with rational coefficients of the Jacobian of a curve. Assume D is a divisor in a base point free \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$g^r_d$$\end{document} of the curve such that the canonical divisor K is a multiple of the divisor D. We find relations between tautological cycles. We give applications for curves having a degree d covering of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb{P}}^1$$\end{document} whose ramification points are all of order d, and then for hyperelliptic curves.