Criteria for correct solvability of a general Sturm–Liouville equation in the space L1(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_1({\mathbb {R}})$$\end{document}

被引:0
|
作者
N. Chernyavskaya
L. Shuster
机构
[1] Ben-Gurion University of the Negev,Department of Mathematics
[2] Bar-Ilan University,Department of Mathematics
关键词
34B24; 34L40;
D O I
10.1007/s40574-017-0144-y
中图分类号
学科分类号
摘要
We consider the equation 1-(r(x)y′(x))′+q(x)y(x)=f(x),x∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} - (r(x)y'(x))'+q(x)y(x)=f(x),\quad x\in {\mathbb {R}} \end{aligned}$$\end{document}where f∈L1(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in L_1({\mathbb {R}}) $$\end{document} and 2r>0,q≥0,1/r∈L1loc(R),q∈L1loc(R),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned}&r >0,\quad q\ge 0,\quad 1/r\in L_1^{\mathrm{loc}}({\mathbb {R}}),\quad q\in L_1^{\mathrm{loc}}({\mathbb {R}}),\end{aligned}$$\end{document}3lim|d|→∞∫x-dxdtr(t)·∫x-dxq(t)dt=∞.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned}&\lim _{|d|\rightarrow \infty }\int _{x-d}^x\frac{dt}{r(t)}\cdot \int _{x-d}^x q(t)dt=\infty . \end{aligned}$$\end{document}By a solution of (1), we mean any function y,  absolutely continuous in R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}$$\end{document} together with ry′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ry'$$\end{document}, which satisfies (1) almost everywhere in R.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}.$$\end{document} Under conditions (2) and (3), we give a criterion for correct solvability of (1) in the space L1(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_1({\mathbb {R}})$$\end{document}.
引用
收藏
页码:417 / 443
页数:26
相关论文
共 50 条