Space–time fractional Cauchy problem in spaces of generalized functions

被引:0
|
作者
H. P. Lopushans’ka
A. O. Lopushans’kyi
机构
[1] Lviv National University,
[2] Rzeszów University,undefined
来源
关键词
Generalize Function; Cauchy Problem; Fractional Order; Fractional Derivative; Fractional Calculus;
D O I
暂无
中图分类号
学科分类号
摘要
We prove the theorem on existence and uniqueness of solution to the Cauchy problem\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \begin{array}{*{20}{c}} {u_t^{{\left( \beta \right)}}+{a^2}{{{\left( {-\varDelta } \right)}}^{{\alpha /2}}}u=F\left( {x,t} \right),\quad \left( {x,t} \right)\in {{\mathbb{R}}^n}\times (0,T],\quad a=\mathrm{const}\hbox{,}} \\ {u\left( {x,0} \right)={u_0}(x),\quad x\in {R^n},} \\ \end{array} $$\end{document}where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ u_t^{{(\beta )}} $\end{document} is the Riemann–Liouville fractional derivative of order β ∈ (0, 1) and u0 and F belong to spaces of generalized functions. A representation of this solution is obtained by using the vector Green function. We also establish the character of singularities of the solution for t = 0 depending on the order of singularity of a given generalized function in the initial condition and the character of power singularities of the function on the right-hand side of the equation. In this case, the fractional n-dimensional Laplace operator is defined by using the Fourier transformation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathfrak{F}\left[ {{{{\left( {-\varDelta } \right)}}^{{{\alpha \left/ {2} \right.}}}}\psi (x)} \right]={{\left| \lambda \right|}^{\alpha }}\mathfrak{F}\left[ {\psi (x)} \right] $\end{document}.
引用
收藏
页码:1215 / 1230
页数:15
相关论文
共 50 条
  • [1] Space-time fractional Cauchy problem in spaces of generalized functions
    Lopushans'ka, H. P.
    Lopushans'kyi, A. O.
    [J]. UKRAINIAN MATHEMATICAL JOURNAL, 2013, 64 (08) : 1215 - 1230
  • [2] The Cauchy problem in a space of generalized functions for the equations possessing the fractional time derivative
    Lopushanska, H. P.
    Lopushanskyj, A. O.
    Pasichnik, E. V.
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 2011, 52 (06) : 1022 - 1031
  • [3] The Cauchy problem in a space of generalized functions for the equations possessing the fractional time derivative
    H. P. Lopushanska
    A. O. Lopushanskyj
    E. V. Pasichnik
    [J]. Siberian Mathematical Journal, 2011, 52 : 1022 - 1031
  • [4] The Cauchy problem for generalized fractional Camassa–Holm equation in Besov space
    Lei Mao
    Hongjun Gao
    [J]. Monatshefte für Mathematik, 2021, 195 : 451 - 475
  • [5] ON THE SOLUTIONS TO A GENERALIZED FRACTIONAL CAUCHY PROBLEM
    Lupinska, Barbara
    Odzijewicz, Tatiana
    Schmeidel, Ewa
    [J]. APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2016, 10 (02) : 332 - 344
  • [6] THE CAUCHY-PROBLEM IN A SPACE OF GENERALIZED-FUNCTIONS .1.
    COLOMBEAU, JF
    HEIBIG, A
    OBERGUGGENBERGER, M
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1993, 317 (09): : 851 - 855
  • [7] THE CAUCHY-PROBLEM IN A SPACE OF GENERALIZED-FUNCTIONS .2.
    COLOMBEAU, JF
    HEIBIG, A
    OBERGUGGENBERGER, M
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1994, 319 (11): : 1179 - 1183
  • [8] The Cauchy problem for generalized fractional Camassa-Holm equation in Besov space
    Mao, Lei
    Gao, Hongjun
    [J]. MONATSHEFTE FUR MATHEMATIK, 2021, 195 (03): : 451 - 475
  • [9] CAUCHY PROBLEM IN A CLASS OF GENERALIZED FUNCTIONS
    AKHMEDOV, SA
    [J]. DOKLADY AKADEMII NAUK SSSR, 1971, 201 (05): : 1022 - &
  • [10] On the Cauchy Problem for Nonlinear Fractional Systems with Lipschitzian Matrices Under the Generalized Metric Spaces
    Boutiara, Abdelatif
    Ntouyas, Sotiris K.
    Assiri, Taghreed A.
    Tariboon, Jessada
    Mahmoud, Emad E.
    [J]. QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (SUPPL 1)