Initial-Boundary Value Problem for the Camassa–Holm Equation with Linearizable Boundary Condition

被引:0
|
作者
Anne Boutet de Monvel
Dmitry Shepelsky
机构
[1] Université Paris Diderot,Institut de Mathématiques de Jussieu
[2] Institute for Low Temperature Physics,Mathematical Division
来源
关键词
Primary 37K15; Secondary 35Q55; 35Q15; 65M12; initial boundary value problem; integrable system; Camassa–Holm; long time asymptotics; Riemann–Hilbert problem; linearizable boundary condition;
D O I
暂无
中图分类号
学科分类号
摘要
We present a Riemann–Hilbert problem formalism for the initial boundary value problem for the Camassa–Holm equation on the half-line x > 0 with homogeneous Dirichlet boundary condition at x = 0. We show that, similarly to the problem on the whole line, the solution of this problem can be obtained in parametric form via the solution of a Riemann–Hilbert problem determined by the initial data via associated spectral functions. This allows us to apply the non-linear steepest descent method and to describe the large-time asymptotics of the solution.
引用
下载
收藏
页码:123 / 141
页数:18
相关论文
共 50 条