We investigated the visible-light sensitive photocatalytic ability of a designed ternary Pd-GO/TiON nano-composite for use as an effective photocatalyst in membranes. We succeeded in synthesizing the TiO2-based photocata-lyst for Suzuki coupling reaction and application of this photocatalyst for fabricating high performance photocatalytic membrane. In this regard, palladium metal as a complementary metal in combination with N-doped TiO2 (TiON) and graphene oxide (GO) nanosheets was utilized to synthesize the upgraded version of the visible light sensitive nanocom-posite photocatalyst. The synthesis of Pd-GO/TiON hierarchical nanostructure was confirmed by detecting Ti, Pd, C, O and N elements by X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray (EDX) and EDX mapping analysis. Then, a series of PVDF-based photocatalytic nanocomposite membranes (PhNMs) filled with Pd-GO/TiON was fabricated. Evaluating the yield of Pd-GO/TiON photocatalyst was around 99% and 70% for heterogeneous system and the prepared PhNM containing 3% Pd-GO/TiON, respectively. Although, yield of Pd-GO/TiON photocatalyst in membrane is not comparable with the high yield reported by other researchers in heterogeneous system; however, it can be considered as a valuable result because of the importance of photocatalytic reactions and the environmental advantages of membrane technology. Furthermore, various analyses were also performed to study the synthesized photocata-lysts and the prepared photocatalytic membranes, including thermogravimetric analysis (TGA), scanning electron microscopy (SEM), X-ray powder diffraction (XRD) and diffuse reflectance spectrophotometry (DRS).