Greenhouse-gas forced changes in the Atlantic meridional overturning circulation and related worldwide sea-level change

被引:0
|
作者
Matthew P. Couldrey
Jonathan M. Gregory
Xiao Dong
Oluwayemi Garuba
Helmuth Haak
Aixue Hu
William J. Hurlin
Jiangbo Jin
Johann Jungclaus
Armin Köhl
Hailong Liu
Sayantani Ojha
Oleg A. Saenko
Abhishek Savita
Tatsuo Suzuki
Zipeng Yu
Laure Zanna
机构
[1] University of Reading,National Centre for Atmospheric Science
[2] Met Office Hadley Centre,International Center for Climate and Environment Sciences, Institute of Atmospheric Physics
[3] Chinese Academy of Sciences,Centrum für Erdsystemforschung und Nachhaltigkeit
[4] Pacific Northwest National Laboratory,LASG, Institute of Atmospheric Physics
[5] Max Plank Institute for Meteorology,SEOS
[6] National Center for Atmospheric Research,Institute for Marine and Antarctic Studies
[7] NOAA Geophysical Fluid Dynamics Laboratory,Oceans and Atmosphere
[8] Universität Hamburg,undefined
[9] Chinese Academy of Sciences,undefined
[10] Indian Institute of Space Science and Technology,undefined
[11] University of Victoria,undefined
[12] GEOMAR Helmholtz Centre for Ocean Research Kiel,undefined
[13] University of Tasmania,undefined
[14] CSIRO,undefined
[15] ARC Centre of Excellence for Climate Extremes,undefined
[16] Japan Agency for Marine-Earth Science and Technology,undefined
[17] New York University Courant Institute,undefined
来源
Climate Dynamics | 2023年 / 60卷
关键词
AMOC; Sea-level rise; Climate modelling;
D O I
暂无
中图分类号
学科分类号
摘要
The effect of anthropogenic climate change in the ocean is challenging to project because atmosphere-ocean general circulation models (AOGCMs) respond differently to forcing. This study focuses on changes in the Atlantic Meridional Overturning Circulation (AMOC), ocean heat content (Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta$$\end{document}OHC), and the spatial pattern of ocean dynamic sea level (Δζ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta \zeta$$\end{document}). We analyse experiments following the FAFMIP protocol, in which AOGCMs are forced at the ocean surface with standardised heat, freshwater and momentum flux perturbations, typical of those produced by doubling CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {CO}_{{2}}$$\end{document}. Using two new heat-flux-forced experiments, we find that the AMOC weakening is mainly caused by and linearly related to the North Atlantic heat flux perturbation, and further weakened by a positive coupled heat flux feedback. The quantitative relationships are model-dependent, but few models show significant AMOC change due to freshwater or momentum forcing, or to heat flux forcing outside the North Atlantic. AMOC decline causes warming at the South Atlantic-Southern Ocean interface. It does not strongly affect the global-mean vertical distribution of Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta$$\end{document}OHC, which is dominated by the Southern Ocean. AMOC decline strongly affects Δζ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta \zeta$$\end{document} in the North Atlantic, with smaller effects in the Southern Ocean and North Pacific. The ensemble-mean Δζ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta \zeta$$\end{document} and Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta$$\end{document}OHC patterns are mostly attributable to the heat added by the flux perturbation, with smaller effects from ocean heat and salinity redistribution. The ensemble spread, on the other hand, is largely due to redistribution, with pronounced disagreement among the AOGCMs.
引用
收藏
页码:2003 / 2039
页数:36
相关论文
共 39 条
  • [1] Greenhouse-gas forced changes in the Atlantic meridional overturning circulation and related worldwide sea-level change
    Couldrey, Matthew P.
    Gregory, Jonathan M.
    Dong, Xiao
    Garuba, Oluwayemi
    Haak, Helmuth
    Hu, Aixue
    Hurlin, William J.
    Jin, Jiangbo
    Jungclaus, Johann
    Koehl, Armin
    Liu, Hailong
    Ojha, Sayantani
    Saenko, Oleg A.
    Savita, Abhishek
    Suzuki, Tatsuo
    Yu, Zipeng
    Zanna, Laure
    [J]. CLIMATE DYNAMICS, 2023, 60 (7-8) : 2003 - 2039
  • [2] On the relation between Meridional Overturning Circulation and sea-level gradients in the Atlantic
    Kienert, H.
    Rahmstorf, S.
    [J]. EARTH SYSTEM DYNAMICS, 2012, 3 (02) : 109 - 120
  • [3] Response of the Atlantic meridional overturning circulation to a reversal of greenhouse gas increases
    L. C. Jackson
    N. Schaller
    R. S. Smith
    M. D. Palmer
    M. Vellinga
    [J]. Climate Dynamics, 2014, 42 : 3323 - 3336
  • [4] Response of the Atlantic meridional overturning circulation to a reversal of greenhouse gas increases
    Jackson, L. C.
    Schaller, N.
    Smith, R. S.
    Palmer, M. D.
    Vellinga, M.
    [J]. CLIMATE DYNAMICS, 2014, 42 (11-12) : 3323 - 3336
  • [5] Regional Patterns of Sea Level Change Related to Interannual Variability and Multidecadal Trends in the Atlantic Meridional Overturning Circulation
    Lorbacher, K.
    Dengg, J.
    Boening, C. W.
    Biastoch, A.
    [J]. JOURNAL OF CLIMATE, 2010, 23 (15) : 4243 - 4254
  • [6] Teleconnection between the Atlantic Meridional Overturning Circulation and Sea Level in the Mediterranean Sea
    Volkov, Denis L.
    Baringer, Molly
    Smeed, David
    Johns, William
    Landerer, Felix W.
    [J]. JOURNAL OF CLIMATE, 2019, 32 (03) : 935 - 955
  • [7] Late Holocene sea level variability and Atlantic Meridional Overturning Circulation
    Cronin, T. M.
    Farmer, J.
    Marzen, R. E.
    Thomas, E.
    Varekamp, J. C.
    [J]. PALEOCEANOGRAPHY, 2014, 29 (08): : 765 - 777
  • [8] Northward intensification of anthropogenically forced changes in the Atlantic meridional overturning circulation (AMOC)
    Zhang, Rong
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2010, 37
  • [9] How is New England Coastal Sea Level Related to the Atlantic Meridional Overturning Circulation at 26° N?
    Piecuch, Christopher G.
    Dangendorf, Soenke
    Gawarkiewicz, Glen G.
    Little, Christopher M.
    Ponte, Rui M.
    Yang, Jiayan
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2019, 46 (10) : 5351 - 5360
  • [10] Collapse and slow recovery of the Atlantic Meridional Overturning Circulation (AMOC) under abrupt greenhouse gas forcing
    Curtis, Paul Edwin
    Fedorov, Alexey V.
    [J]. CLIMATE DYNAMICS, 2024,