Thermoelastic properties of grossular–andradite solid solution at high pressures and temperatures

被引:0
|
作者
Dawei Fan
Yunqian Kuang
Jingui Xu
Bo Li
Wenge Zhou
Hongsen Xie
机构
[1] Chinese Academy of Sciences,Key Laboratory for High Temperature and High Pressure Study of the Earth’s Interior, Institute of Geochemistry
[2] University of Chinese Academy of Sciences,undefined
来源
关键词
Grossular–andradite solid solution; Equation of state; High pressure and high temperature; X-ray diffraction; Diamond anvil cell;
D O I
暂无
中图分类号
学科分类号
摘要
The pressure–volume–temperature (P–V–T) equation of state (EoS) of synthetic grossular (Grs)–andradite (And) solid-solution garnet sample have been measured at high temperature up to 900 K and high pressures up to 22.75 GPa for Grs50And50, by using in situ angle-dispersive X-ray diffraction and diamond anvil cell. Analysis of room-temperature P–V data to a third-order Birch–Murnaghan (BM) EoS yields: V0 = 1706.8 ± 0.2 Å3, K0 = 164 ± 2 GPa and K′0 = 4.7 ± 0.5. Fitting of our P–V–T data by means of the high-temperature third-order BM EoS gives the thermoelastic parameters: V0 = 1706.9 ± 0.2 Å3, K0 = 164 ± 2 GPa, K′0 = 4.7 ± 0.2, (∂K/∂T)P = −0.018 ± 0.002 GPa K−1, and α0 = (2.94 ± 0.07) × 10−5 K−1. The results also confirm that grossular content increases the bulk modulus of the Grs-And join following a nearly ideal mixing model. The relation between bulk modulus and Grs mole fraction (XGrs) in this garnet join is derived to be K0 (GPa) = (163.7 ± 0.7) + (0.14 ± 0.02) XGrs (R2 = 0.985). Present results are also compared to previously studies determined the thermoelastic properties of Grs-And garnets.
引用
收藏
页码:137 / 147
页数:10
相关论文
共 50 条
  • [1] Thermoelastic properties of grossular-andradite solid solution at high pressures and temperatures
    Fan, Dawei
    Kuang, Yunqian
    Xu, Jingui
    Li, Bo
    Zhou, Wenge
    Xie, Hongsen
    [J]. PHYSICS AND CHEMISTRY OF MINERALS, 2017, 44 (02) : 137 - 147
  • [2] The Study of Crystal Structure on Grossular-Andradite Solid Solution
    Wang, Yichuan
    Sun, Qiang
    Duan, Dengfei
    Bao, Xinjian
    Liu, Xi
    [J]. MINERALS, 2019, 9 (11)
  • [3] Hydrogen-mobility in grossular-andradite solid solution
    Kurka, A
    Ingrin, J
    Forneris, JF
    Skogby, H
    [J]. GEOCHIMICA ET COSMOCHIMICA ACTA, 2004, 68 (11) : A34 - A34
  • [4] Elasticity of grossular-andradite solid solution: an ab initio investigation
    Lacivita, Valentina
    Erba, Alessandro
    Dovesi, Roberto
    D'Arco, Philippe
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (29) : 15331 - 15338
  • [5] High Pressure X-Ray Diffraction Study of a Grossular-Andradite Solid Solution and the Bulk Modulus Variation along this Solid Solution
    Fan Da-Wei
    Wei Shu-Yi
    Liu Jing
    Li Yan-Chun
    Xie Hong-Sen
    [J]. CHINESE PHYSICS LETTERS, 2011, 28 (07)
  • [6] Thermodynamic and Elastic Properties of Grossular at High Pressures and High Temperatures: A First-Principles Study
    Duan, Longyu
    Wang, Wenzhong
    Wu, Zhongqing
    Qian, Wangsheng
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2019, 124 (08) : 7792 - 7805
  • [7] Equation of state, thermoelastic properties and melting behavior of NaCl at high temperatures and high pressures
    Sheelendra, K.
    Vijay, A.
    [J]. JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2018, 123 : 364 - 370
  • [8] The elastic solid solution model for minerals at high pressures and temperatures
    R. Myhill
    [J]. Contributions to Mineralogy and Petrology, 2018, 173
  • [9] The elastic solid solution model for minerals at high pressures and temperatures
    Myhill, R.
    [J]. CONTRIBUTIONS TO MINERALOGY AND PETROLOGY, 2018, 173 (02)
  • [10] Thermo-elastic behavior of grossular garnet at high pressures and temperatures
    Milani, Sula
    Angel, Ross J.
    Scandolo, Lorenzo
    Mazzucchelli, Mattia L.
    Ballaran, Tiziana Boffa
    Klemme, Stephan
    Domeneghetti, Maria C.
    Miletich, Ronald
    Scheidl, Katharina S.
    Derzsi, Mariana
    Tokar, Kamil
    Prencipe, Mauro
    Alvaro, Matteo
    Nestola, Fabrizio
    [J]. AMERICAN MINERALOGIST, 2017, 102 (04) : 851 - 859