Modular discretization of the AdS2/CFT1 holography

被引:0
|
作者
Minos Axenides
Emmanuel Floratos
Stam Nicolis
机构
[1] Institute of Nuclear and Particle Physics,Department of Physics
[2] N.C.S.R. Demokritos,undefined
[3] University of Athens,undefined
[4] Theory Division,undefined
[5] Department of Physics,undefined
[6] CERN,undefined
[7] CNRS-Laboratoire de Mathématiques et Physique Théorique (UMR 7350),undefined
[8] Fédération ‘Denis Poisson’ (FR2964),undefined
[9] Université de Tours ‘François Rabelais’,undefined
[10] Parc Grandmont,undefined
关键词
Black Holes in String Theory; AdS-CFT Correspondence;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a finite discretization for the black hole, near horizon, geometry and dynamics. We realize our proposal, in the case of extremal black holes, for which the radial and temporal near horizon geometry is known to be \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathrm{Ad}{{\mathrm{S}}_2}={{{\mathrm{S}\mathrm{L}\left( {2,\mathbb{R}} \right)}} \left/ {{\mathrm{S}\mathrm{O}\left( {1,1,\mathbb{R}} \right)}} \right.} $\end{document}. We implement its discretization by replacing the set of real numbers \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathbb{R} $\end{document} with the set of integers modulo N with AdS2 going over to the finite geometry \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathrm{Ad}{{\mathrm{S}}_2}\left[ N \right]={{{\mathrm{S}\mathrm{L}\left( {2,{{\mathbb{Z}}_N}} \right)}} \left/ {{\mathrm{S}\mathrm{O}\left( {1,1,{{\mathbb{Z}}_N}} \right)}} \right.} $\end{document}. We model the dynamics of the microscopic degrees of freedom by generalized Arnol’d cat maps, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathrm{A}\in \mathrm{SL}\left( {2,{{\mathbb{Z}}_N}} \right) $\end{document} which are isometries of the geometry, at both the classical and quantum levels. These are well known to exhibit fast quantum information processing through the well studied properties of strong arithmetic chaos, dynamical entropy, nonlocality and factorization in the cutoff discretization N. We construct, finally, a new kind of unitary and holographic correspondence, for AdS2[N]/CFT1[N], via coherent states of the bulk and boundary geometries.
引用
收藏
相关论文
共 50 条
  • [1] Modular discretization of the AdS2/CFT1 holography
    Axenides, Minos
    Floratos, Emmanuel
    Nicolis, Stam
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2014, (02):
  • [2] Towards higher-spin AdS2/CFT1 holography
    Konstantin Alkalaev
    Xavier Bekaert
    [J]. Journal of High Energy Physics, 2020
  • [3] Towards higher-spin AdS2/CFT1 holography
    Alkalaev, Konstantin
    Bekaert, Xavier
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (04)
  • [4] AdS3/CFT2 to AdS2/CFT1
    Gupta, Rajesh Kumar
    Sen, Ashoke
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2009, (04):
  • [5] Entropy function and AdS2/CFT1 correspondence
    Sen, Ashoke
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2008, (11):
  • [6] Classical and quantum integrability in AdS2/CFT1
    Jeff Murugan
    Per Sundin
    Linus Wulff
    [J]. Journal of High Energy Physics, 2013
  • [7] Classical and quantum integrability in AdS2/CFT1
    Murugan, Jeff
    Sundin, Per
    Wulff, Linus
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2013, (01):
  • [8] Scattering in AdS2/CFT1 and the BES phase
    Michael C. Abbott
    Jeff Murugan
    Per Sundin
    Linus Wulff
    [J]. Journal of High Energy Physics, 2013
  • [9] Scattering in AdS2/CFT1 and the BES phase
    Abbott, Michael C.
    Murugan, Jeff
    Sundin, Per
    Wulff, Linus
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2013, (10):
  • [10] Spin-2 operators in AdS2/CFT1
    Rigatos, Konstantinos C.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (06)