Presentations of rings with non-trivial semidualizing modules

被引:0
|
作者
David A. Jorgensen
Graham J. Leuschke
Sean Sather-Wagstaff
机构
[1] University of Texas at Arlington,Department of Mathematics
[2] Syracuse University,Mathematics Department
[3] NDSU Dept # 2750,Department of Mathematics
来源
Collectanea Mathematica | 2012年 / 63卷
关键词
Gorenstein rings; Semidualizing modules; Self-orthogonal modules; Tor-independence; Tate Tor; Tate Ext; 13C05; 13D07; 13H10;
D O I
暂无
中图分类号
学科分类号
摘要
Let R be a commutative noetherian local ring. A finitely generated R-module C is semidualizing if it is self-orthogonal and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm Hom}_R(C,C)\cong R}$$\end{document} . We prove that a Cohen–Macaulay ring R with dualizing module D admits a semidualizing module C satisfying \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R\ncong C \ncong D}$$\end{document} if and only if it is a homomorphic image of a Gorenstein ring in which the defining ideal decomposes in a cohomologically independent way. This expands on a well-known result of Foxby, Reiten and Sharp saying that R admits a dualizing module if and only if R is Cohen–Macaulay and a homomorphic image of a local Gorenstein ring.
引用
收藏
页码:165 / 180
页数:15
相关论文
共 50 条