We establish the stability of nodal multilevel decompositions of lowest-order conforming boundary element subspaces of the trace space \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\boldsymbol{H}}^{-\frac {1}{2}}(\operatorname {div}_{\varGamma },{\varGamma })$\end{document} of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\boldsymbol{H}}(\operatorname {\bf curl},{\varOmega })$\end{document} on boundaries of triangulated Lipschitz polyhedra. The decompositions are based on nested triangular meshes created by uniform refinement and the stability bounds are uniform in the number of refinement levels.