Stable multilevel splittings of boundary edge element spaces

被引:0
|
作者
Ralf Hiptmair
Shipeng Mao
机构
[1] ETH Zürich,SAM
来源
BIT Numerical Mathematics | 2012年 / 52卷
关键词
Trace spaces; Boundary element methods; Edge elements; Multilevel preconditioning; 65N12; 65N15; 65N30;
D O I
暂无
中图分类号
学科分类号
摘要
We establish the stability of nodal multilevel decompositions of lowest-order conforming boundary element subspaces of the trace space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\boldsymbol{H}}^{-\frac {1}{2}}(\operatorname {div}_{\varGamma },{\varGamma })$\end{document} of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\boldsymbol{H}}(\operatorname {\bf curl},{\varOmega })$\end{document} on boundaries of triangulated Lipschitz polyhedra. The decompositions are based on nested triangular meshes created by uniform refinement and the stability bounds are uniform in the number of refinement levels.
引用
收藏
页码:661 / 685
页数:24
相关论文
共 50 条