Asymptotics of Eigenvalues of Non-Self-Adjoint Schrödinger Operators on a Half-Line

被引:0
|
作者
Kwang C. Shin
机构
[1] University of West Georgia,Department of Mathematics
关键词
Non-self-adjoint Schrödinger operators; Robin boundary condition; asymptotics of eigenvalues; 34L20; 34L40;
D O I
暂无
中图分类号
学科分类号
摘要
We study the eigenvalues of the non-self-adjoint problem \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ - y^{\prime \prime}+V(x)y=Ey$$\end{document} on the half-line 0 ≤ x < +∞ under the Robin boundary condition at x = 0, where V is a monic polynomial of degree at least 3. We obtain a Bohr-Sommerfeld-like asymptotic formula for En that depends on the boundary conditions. Consequently, we solve certain inverse spectral problems, recovering the potential V and boundary condition from the first (m + 2) terms of the asymptotic formula.
引用
收藏
页码:111 / 133
页数:22
相关论文
共 50 条
  • [1] Asymptotics of Eigenvalues of Non-Self-Adjoint Schrodinger Operators on a Half-Line
    Shin, Kwang C.
    [J]. COMPUTATIONAL METHODS AND FUNCTION THEORY, 2010, 10 (01) : 111 - 133
  • [2] Lieb-Thirring and Jensen sums for non-self-adjoint Schrödinger operators on the half-line
    Golinskii, Leonid
    Stepanenko, Alexei
    [J]. JOURNAL OF SPECTRAL THEORY, 2023, 13 (04) : 1345 - 1391
  • [3] On half-line spectra for a class of non-self-adjoint Hill operators
    Shin, KC
    [J]. MATHEMATISCHE NACHRICHTEN, 2003, 261 : 171 - 175
  • [4] Homogeneous Schrödinger Operators on Half-Line
    Laurent Bruneau
    Jan Dereziński
    Vladimir Georgescu
    [J]. Annales Henri Poincaré, 2011, 12 : 547 - 590
  • [5] Spectral Enclosures for Non-self-adjoint Discrete Schrödinger Operators
    Orif O. Ibrogimov
    František Štampach
    [J]. Integral Equations and Operator Theory, 2019, 91
  • [6] Spectral enclosures and stability for non-self-adjoint discrete Schrodinger operators on the half-line
    Krejcirik, David
    Laptev, Ari
    Stampach, Frantisek
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2022, 54 (06) : 2379 - 2403
  • [7] An inverse problem for the quadratic pencil of non-self-adjoint matrix operators on the half-line
    Bondarenko, Natalia
    Freiling, Gerhard
    [J]. JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2014, 22 (04): : 467 - 495
  • [8] Isospectrum of non-self-adjoint almost-periodic Schrödinger operators
    Wang, Xueyin
    You, Jiangong
    Zhou, Qi
    [J]. JOURNAL OF SPECTRAL THEORY, 2024, 14 (01) : 355 - 396
  • [9] Semi-Classical States for Non-Self-Adjoint Schrödinger Operators
    E.B. Davies
    [J]. Communications in Mathematical Physics, 1999, 200 : 35 - 41
  • [10] Spectrum and pseudospectrum of non-self-adjoint Schrödinger operators with periodic coefficients
    S. V. Gal’tsev
    A. I. Shafarevich
    [J]. Mathematical Notes, 2006, 80 : 345 - 354