The Maximum Number of Spanning Trees of a Graph with Given Matching Number

被引:0
|
作者
Muhuo Liu
Guangliang Zhang
Kinkar Chandra Das
机构
[1] South China Agricultural University,Department of Mathematics
[2] Guangdong Polytechnic Normal University,School of Mathematics and Systems Science
[3] Sungkyunkwan University,Department of Mathematics
关键词
Graph; Spanning tree; Matching number; 05C50; 15A18;
D O I
暂无
中图分类号
学科分类号
摘要
The number of spanning trees of a graph G is the total number of distinct spanning subgraphs of G that are trees. Feng et al. determined the maximum number of spanning trees in the class of connected graphs with n vertices and matching number β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} for 2≤β≤n/3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\le \beta \le n/3$$\end{document} and β=⌊n/2⌋\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta =\lfloor n/2\rfloor $$\end{document}. They also pointed out that it is still an open problem to the case of n/3<β≤⌊n/2⌋-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n/3<\beta \le \lfloor n/2\rfloor -1$$\end{document}. In this paper, we solve this problem completely.
引用
收藏
页码:3725 / 3732
页数:7
相关论文
共 50 条
  • [1] The Maximum Number of Spanning Trees of a Graph with Given Matching Number
    Liu, Muhuo
    Zhang, Guangliang
    Das, Kinkar Chandra
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (06) : 3725 - 3732
  • [2] The number of spanning trees of a graph with given matching number
    Feng, Lihua
    Xu, Kexiang
    Das, Kinkar Ch.
    Ilic, Aleksandar
    Yu, Guihai
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2016, 93 (06) : 837 - 843
  • [3] MINIMAL GRAPH WITH A GIVEN NUMBER OF SPANNING TREES
    SEDLACEK, J
    [J]. CANADIAN MATHEMATICAL BULLETIN, 1970, 13 (04): : 515 - &
  • [4] FINDING THE GRAPH WITH THE MAXIMUM NUMBER OF SPANNING-TREES
    MOUSTAKIDES, G
    BEDROSIAN, SD
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1980, 310 (06): : 343 - 348
  • [5] Maximum Size of a Graph with Given Fractional Matching Number
    Ma, Tianlong
    Qian, Jianguo
    Shi, Chao
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (03):
  • [6] The number of spanning trees of a graph
    Kinkar C Das
    Ahmet S Cevik
    Ismail N Cangul
    [J]. Journal of Inequalities and Applications, 2013
  • [7] The number of spanning trees of a graph
    Li, Jianxi
    Shiu, Wai Chee
    Chang, An
    [J]. APPLIED MATHEMATICS LETTERS, 2010, 23 (03) : 286 - 290
  • [8] The number of spanning trees of a graph
    Das, Kinkar C.
    Cevik, Ahmet S.
    Cangul, Ismail N.
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [9] On graphs with the maximum number of spanning trees
    Kelmans, AK
    [J]. RANDOM STRUCTURES & ALGORITHMS, 1996, 9 (1-2) : 177 - 192
  • [10] The number of spanning trees of the Bruhat graph
    Ehrenborg, Richard
    [J]. ADVANCES IN APPLIED MATHEMATICS, 2021, 125