Approximating Maximum Diameter-Bounded Subgraph in Unit Disk Graphs

被引:0
|
作者
A. Karim Abu-Affash
Paz Carmi
Anil Maheshwari
Pat Morin
Michiel Smid
Shakhar Smorodinsky
机构
[1] Shamoon College of Engineering,Software Engineering Department
[2] Ben-Gurion University,Department of Computer Science
[3] Carleton University,School of Computer Science
[4] Ben-Gurion University,Department of Mathematics
来源
关键词
Approximation algorithms; Maximum diameter-bounded subgraph; Unit disk graphs; Fractional Helly theorem; VC-dimension; 68W25;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a well-studied generalization of the maximum clique problem which is defined as follows. Given a graph G on n vertices and a fixed parameter d≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 1$$\end{document}, in the maximum diameter-bounded subgraph problem (MaxDBS for short) the goal is to find a (vertex) maximum subgraph of G of diameter at most d. For d=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=1$$\end{document}, this problem is equivalent to the maximum clique problem and thus it is NP-hard to approximate it within a factor n1-ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n^{1-\epsilon }$$\end{document}, for any ϵ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon >0$$\end{document}. Moreover, it is known that, for any d≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 2$$\end{document}, it is NP-hard to approximate MaxDBS within a factor n1/2-ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n^{1/2-\epsilon }$$\end{document}, for any ϵ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon >0$$\end{document}. In this paper we focus on MaxDBS for the class of unit disk graphs. We provide a polynomial-time constant-factor approximation algorithm for the problem. The approximation ratio of our algorithm does not depend on the diameter d. Even though the algorithm itself is simple, its analysis is rather involved. We combine tools from the theory of hypergraphs with bounded VC-dimension, k-quasi planar graphs, fractional Helly theorems, and several geometric properties of unit disk graphs.
引用
收藏
页码:1401 / 1414
页数:13
相关论文
共 50 条
  • [1] Approximating Maximum Diameter-Bounded Subgraph in Unit Disk Graphs
    Abu-Affash, A. Karim
    Carmi, Paz
    Maheshwari, Anil
    Morin, Pat
    Smid, Michiel
    Smorodinsky, Shakhar
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2021, 66 (04) : 1401 - 1414
  • [2] Approximating Maximum Diameter-Bounded Subgraphs
    Asahiro, Yuichi
    Miyano, Eiji
    Samizo, Kazuaki
    [J]. LATIN 2010: THEORETICAL INFORMATICS, 2010, 6034 : 615 - +
  • [3] The maximum degree and diameter-bounded subgraph in the mesh
    Miller, Mirka
    Perez-Roses, Hebert
    Ryan, Joe
    [J]. DISCRETE APPLIED MATHEMATICS, 2012, 160 (12) : 1782 - 1790
  • [4] On approximating the maximum diameter ratio of graphs
    Marincek, J
    Mohar, B
    [J]. DISCRETE MATHEMATICS, 2002, 244 (1-3) : 323 - 330
  • [5] Approximating Maximum Integral Multiflows on Bounded Genus Graphs
    Huang, Chien-Chung
    Mari, Mathieu
    Mathieu, Claire
    Vygen, Jens
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2023, 70 (04) : 1266 - 1291
  • [6] Approximating Maximum Integral Multiflows on Bounded Genus Graphs
    Chien-Chung Huang
    Mathieu Mari
    Claire Mathieu
    Jens Vygen
    [J]. Discrete & Computational Geometry, 2023, 70 : 1266 - 1291
  • [7] Computing Optimal Diameter-Bounded Polygon Partitions
    Mirela Damian
    Sriram V. Pemmaraju
    [J]. Algorithmica , 2004, 40 : 1 - 14
  • [8] Computing optimal diameter-bounded polygon partitions
    Damiani, M
    Pemmaraju, SV
    [J]. ALGORITHMICA, 2004, 40 (01) : 1 - 14
  • [9] Approximating 2-cliques in unit disk graphs
    Pattillo, Jeffrey
    Wang, Yiming
    Butenko, Sergiy
    [J]. DISCRETE APPLIED MATHEMATICS, 2014, 166 : 178 - 187
  • [10] Improved Hardness of Maximum Common Subgraph Problems on Labeled Graphs of Bounded Treewidth and Bounded Degree
    Akutsu, Tatsuya
    Melkman, Avraham A.
    Tamura, Takeyuki
    [J]. INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2020, 31 (02) : 253 - 273