共 50 条
Ultra-thin layer structured anodes for highly durable low-Pt direct formic acid fuel cells
被引:0
|作者:
Rongyue Wang
Jianguo Liu
Pan Liu
Xuanxuan Bi
Xiuling Yan
Wenxin Wang
Yifei Meng
Xingbo Ge
Mingwei Chen
Yi Ding
机构:
[1] Shandong University,Center for Advanced Energy Materials & Technology Research (AEMT), and School of Chemistry and Chemical Engineering
[2] Nanjing University,Eco
[3] Tohoku University,Materials and Renewable Energy Research Center, Department of Materials Science and Engineering, National Laboratory of Solid State Microstructures
[4] Yili Normal University,WPI Advanced Institute for Materials Research
来源:
关键词:
direct formic acid fuel cells;
low-Pt loading;
core/shell structures;
nanoporous gold;
dealloying;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Direct formic acid fuel cells (DFAFCs) allow highly efficient low temperature conversion of chemical energy into electricity and are expected to play a vital role in our future sustainable society. However, the massive precious metal usage in current membrane electrode assembly (MEA) technology greatly inhibits their actual applications. Here we demonstrate a new type of anode constructed by confining highly active nanoengineered catalysts into an ultra-thin catalyst layer with thickness around 100 nm. Specifically, an atomic layer of platinum is first deposited onto nanoporous gold (NPG) leaf to achieve high utilization of Pt and easy accessibility of both reactants and electrons to active sites. These NPG-Pt core/shell nanostructures are further decorated by a sub-monolayer of Bi to create highly active reaction sites for formic acid electro-oxidation. Thus obtained layer-structured NPG-Pt-Bi thin films allow a dramatic decrease in Pt usage down to 3 μg·cm−2, while maintaining very high electrode activity and power performance at sufficiently low overall precious metal loading. Moreover, these electrode materials show superior durability during half-year test in actual DFAFCs, with remarkable resistance to common impurities in formic acid, which together imply their great potential in applications in actual devices.
引用
收藏
页码:1569 / 1580
页数:11
相关论文