Boundedness and Stability in a Chemotaxis-Growth Model with Indirect Attractant Production and Signal-Dependent Sensitivity

被引:0
|
作者
Shuyan Qiu
Chunlai Mu
Yafeng Li
机构
[1] Chongqing University,College of Mathematics and Statistics
来源
关键词
Chemotaxis; Boundedness; Indirect attractant production; Logistic growth; Asymptotic behavior; 35A01; 92C17; 35B45; 35B40; 35K57; 35Q92;
D O I
暂无
中图分类号
学科分类号
摘要
We study the chemotaxis-growth system with signal-dependent sensitivity function and logistic source {ut=Δu−∇⋅(uχ(v)∇v)+μu(1−u),x∈Ω,t>0,vt=dΔv+h(v,w),x∈Ω,t>0,τwt=−δw+u,x∈Ω,t>0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{aligned} \left \{ \textstyle\begin{array}{l@{\quad }l} u_{t}=\Delta u-\nabla \cdot \bigl(u\chi (v)\nabla v\bigr)+\mu u(1-u), &x \in \varOmega ,\ t>0, \\ v_{t}=d\Delta v+h(v,w), &x\in \varOmega ,\ t>0, \\ \tau w_{t}=-\delta w+u, &x\in \varOmega ,\ t>0, \\ \end{array}\displaystyle \right . \end{aligned}$$ \end{document} under homogeneous Neumann boundary conditions in a smooth bounded domain Ω⊂Rn(n≥1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varOmega \subset \mathbb{R}^{n}\ (n\geq 1)$\end{document}, where the parameters μ,τ,δ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mu , \tau , \delta >0$\end{document} and d≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$d\geq 0$\end{document}, the functions χ(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\chi (v)$\end{document}, h(v,w)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$h(v,w)$\end{document} satisfying some conditions represent the chemotactic sensitivity and the balance between the production and degradation of the chemical signal which relies explicitly on the living organisms, respectively. In the case that χ(v)≡1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\chi (v)\equiv 1$\end{document}, d=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$d=1$\end{document} and h(v,w)=−v+w\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$h(v,w)=-v+w$\end{document}, Hu and Tao (Math. Models Methods Appl. Sci. 26:2111–2128, 2016) asserted global existence of bounded solutions for arbitrary μ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mu >0$\end{document} and established asymptotic behavior of solutions to the mentioned system under the condition μ>18δ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mu >\frac{1}{8\delta ^{2}}$\end{document} in the three dimensional space. The purpose of the present paper is to investigate the global existence and boundedness of classical solutions and to improve the condition assumed in Hu and Tao (Math. Models Methods Appl. Sci. 26:2111–2128, 2016) by extending the previous method for obtaining asymptotic stability. Consequently, the range of μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mu $\end{document} is extended in the present paper.
引用
收藏
页码:341 / 360
页数:19
相关论文
共 50 条
  • [1] Boundedness and Stability in a Chemotaxis-Growth Model with Indirect Attractant Production and Signal-Dependent Sensitivity
    Qiu, Shuyan
    Mu, Chunlai
    Li, Yafeng
    ACTA APPLICANDAE MATHEMATICAE, 2020, 169 (01) : 341 - 360
  • [2] Boundedness and asymptotic behavior in a fully parabolic chemotaxis-growth system with signal-dependent sensitivity
    Pan Zheng
    Chunlai Mu
    Liangchen Wang
    Ling Li
    Journal of Evolution Equations, 2017, 17 : 909 - 929
  • [3] Boundedness and asymptotic behavior in a fully parabolic chemotaxis-growth system with signal-dependent sensitivity
    Zheng, Pan
    Mu, Chunlai
    Wang, Liangchen
    Li, Ling
    JOURNAL OF EVOLUTION EQUATIONS, 2017, 17 (03) : 909 - 929
  • [4] BOUNDEDNESS OF SOLUTIONS TO PARABOLIC-ELLIPTIC CHEMOTAXIS-GROWTH SYSTEMS WITH SIGNAL-DEPENDENT
    Fujie, Kentarou
    Yokota, Tomomi
    MATHEMATICA BOHEMICA, 2014, 139 (04): : 639 - 647
  • [5] Boundedness in the higher-dimensional quasilinear chemotaxis-growth system with indirect attractant production
    Qiu, Shuyan
    Mu, Chunlai
    Wang, Liangchen
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (09) : 3213 - 3223
  • [6] BOUNDEDNESS AND STABILITY FOR AN INDIRECT SIGNAL ABSORPTION CHEMOTAXIS SYSTEM WITH SIGNAL-DEPENDENT MOTILITY
    Xu, Lu
    Mu, Chunlai
    Xin, Qiao
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2024, 17 (02): : 945 - 964
  • [7] Stabilization in three-dimensional chemotaxis-growth model with indirect attractant production
    Tian, Ya
    Li, Dan
    Mu, Chunlai
    COMPTES RENDUS MATHEMATIQUE, 2019, 357 (06) : 513 - 519
  • [8] Boundedness in a higher-dimensional singular chemotaxis-growth system with indirect signal production
    Chao Liu
    Guoqiang Ren
    Bin Liu
    Zeitschrift für angewandte Mathematik und Physik, 2023, 74
  • [9] Boundedness in a higher-dimensional singular chemotaxis-growth system with indirect signal production
    Liu, Chao
    Ren, Guoqiang
    Liu, Bin
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (03):
  • [10] Finite element analysis of chemotaxis-growth model with indirect attractant production and logistic source
    Hassan, Sattar M.
    Harfash, Akil J.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2023, 100 (04) : 745 - 774