Predicting hourly ozone concentrations using wavelets and ARIMA models

被引:0
|
作者
Ledys Salazar
Orietta Nicolis
Fabrizio Ruggeri
Jozef Kisel’ák
Milan Stehlík
机构
[1] University of Valparaíso,Institute of Statistics
[2] CNR IMATI,Institute of Mathematics, Faculty of Science
[3] P. J. Šafárik University in Košice,Institute of Applied Statistics and Linz Institute of Technology
[4] Johannes Kepler University Linz,undefined
来源
关键词
Ozone (; ); Discrete wavelet transform (DWT); Haar wavelet; Autoregressive integrated moving average (ARIMA); 62M10; 42C40; 91B76;
D O I
暂无
中图分类号
学科分类号
摘要
In recent years, air pollution has been a major concern for its implications on human health. Specifically, ozone (O3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{O}_{3}$$\end{document}) pollution is causing common respiratory diseases. In this paper, we illustrate the process of modeling and prediction hourly O3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{O}_ {3}$$\end{document} pollution measurements using wavelet transforms. We split the time series of O3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{O}_{3}$$\end{document} in daily intervals and estimate scale and wavelet coefficients for each interval by the discrete wavelet transform (DWT) with Haar filter. Subsequently we apply cumulated autoregressive integrated moving average (ARIMA) to estimate the coefficients and forecast their evolution in future intervals. Then the inverse discrete wavelet transform is implemented for the reconstruction of the time series and the forecast in the near future. In order to assess the performance of the proposed methodology, we compare the predictions obtained by the DWT–ARIMA with those obtained by the ARIMA model. Several theoretical results are shown through a simulation study.
引用
收藏
页码:4331 / 4340
页数:9
相关论文
共 50 条
  • [1] Predicting hourly ozone concentrations using wavelets and ARIMA models
    Salazar, Ledys
    Nicolis, Orietta
    Ruggeri, Fabrizio
    Kisel'ak, Jozef
    Stehlik, Milan
    [J]. NEURAL COMPUTING & APPLICATIONS, 2019, 31 (08): : 4331 - 4340
  • [2] Predicting tropospheric ozone concentrations in different temporal scales by using multilayer perceptron models
    Ozbay, Bilge
    Keskin, Gulsen Aydin
    Dogruparmak, Senay Cetin
    Ayberk, Savas
    [J]. ECOLOGICAL INFORMATICS, 2011, 6 (3-4) : 242 - 247
  • [3] Comparison of neural network models with ARIMA and regression models for prediction of Houston's daily maximum ozone concentrations
    Prybutok, VR
    Yi, JS
    Mitchell, D
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2000, 122 (01) : 31 - 40
  • [4] Combining neural networks and ARIMA models for hourly temperature forecast
    Hippert, HS
    Pedreira, CE
    Souza, RC
    [J]. IJCNN 2000: PROCEEDINGS OF THE IEEE-INNS-ENNS INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOL IV, 2000, : 414 - 419
  • [5] Predicting tourism demand by ARIMA models
    Petrevska, Biljana
    [J]. ECONOMIC RESEARCH-EKONOMSKA ISTRAZIVANJA, 2017, 30 (01): : 939 - 950
  • [6] Predicting chiller system performance using ARIMA-regression models
    Ho, W. T.
    Yu, F. W.
    [J]. JOURNAL OF BUILDING ENGINEERING, 2021, 33
  • [7] Predicting chiller system performance using ARIMA-regression models
    Ho, W.T.
    Yu, F.W.
    [J]. Yu, F.W. (fuwing.yu@cpce-polyu.edu.hk), 1600, Elsevier Ltd (33):
  • [8] PREDICTING HOUSING SALES IN TURKEY USING ARIMA, LSTM AND HYBRID MODELS
    Soy Temur, Ayse
    Akgun, Melek
    Temur, Gunay
    [J]. JOURNAL OF BUSINESS ECONOMICS AND MANAGEMENT, 2019, 20 (05) : 920 - 938
  • [9] Prediction of Ozone Hourly Concentrations Based on Machine Learning Technology
    Li, Dong
    Ren, Xiaofei
    [J]. SUSTAINABILITY, 2022, 14 (10)
  • [10] Effective 1-day ahead prediction of hourly surface ozone concentrations in eastern Spain using linear models and neural networks
    Ballester, EB
    Valls, GCI
    Carrasco-Rodriguez, JL
    Olivas, ES
    del Valle-Tascon, S
    [J]. ECOLOGICAL MODELLING, 2002, 156 (01) : 27 - 41