Extensions of Lipschitz maps into Hadamard spaces

被引:0
|
作者
U. Lang
B. Pavlović
V. Schroeder
机构
[1] Departement Mathematik,
[2] ETH Zentrum,undefined
[3] Rämistrasse 101,undefined
[4] CH-8092 Zürich,undefined
[5] Switzerland,undefined
[6] e-mail: lang@math.ethz.ch,undefined
[7] Institute of Mathematics,undefined
[8] Belgrade,undefined
[9] Yugoslavia,undefined
[10] and School of Mathematics,undefined
[11] Trinity College,undefined
[12] Dublin 2,undefined
[13] Ireland,undefined
[14] e-mail: pavlovic@maths.tcd.ie,undefined
[15] Institut für Mathematik,undefined
[16] Universität Zürich-Irchel,undefined
[17] Winterthurer Strasse 190,undefined
[18] CH-8057 Zürich,undefined
[19] Switzerland,undefined
[20] e-mail: vschroed@math.unizh.ch,undefined
来源
关键词
Large Classis; Sectional Curvature; Lipschitz Extension; Negative Sectional Curvature; Hadamard Space;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that every \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ \lambda $\end{document}-Lipschitz map \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ f : S \to Y $\end{document} defined on a subset of an arbitrary metric space X possesses a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ c \lambda $\end{document}-Lipschitz extension \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ \bar{f} : X \to Y $\end{document} for some \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ c = c(Y) \ge 1 $\end{document} provided Y is a Hadamard manifold which satisfies one of the following conditions: (i) Y has pinched negative sectional curvature, (ii) Y is homogeneous, (iii) Y is two-dimensional. In case (i) the constant c depends only on the dimension of Y and the pinching constant, in case (iii) one may take \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ c = 4\sqrt{2} $\end{document}. We obtain similar results for large classes of Hadamard spaces Y in the sense of Alexandrov.
引用
收藏
页码:1527 / 1553
页数:26
相关论文
共 50 条
  • [1] Extensions of Lipschitz maps into Hadamard spaces
    Lang, U
    Pavlovic, B
    Schroeder, V
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2000, 10 (06) : 1527 - 1553
  • [2] EXTENSIONS OF LIPSCHITZ-MAPS INTO BANACH-SPACES
    JOHNSON, WB
    LINDENSTRAUSS, J
    SCHECHTMAN, G
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1986, 54 (02) : 129 - 138
  • [3] Optimal extensions of Lipschitz maps on metric spaces of measurable functions
    Rueda, Pilar
    Perez, Enrique A. Sanchez
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 529 (02)
  • [4] Continuity of extensions of Lipschitz maps
    Krzysztof J. Ciosmak
    [J]. Israel Journal of Mathematics, 2021, 245 : 567 - 588
  • [5] Continuity of extensions of Lipschitz maps
    Ciosmak, Krzysztof J.
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2021, 245 (02) : 567 - 588
  • [6] Lipschitz extensions on generalized Grushin spaces
    Bieske, T
    [J]. MICHIGAN MATHEMATICAL JOURNAL, 2005, 53 (01) : 3 - 31
  • [7] LIPSCHITZ EXTENSIONS OF MAPS BETWEEN HEISENBERG GROUPS
    Balogh, Zoltan M.
    Lang, Urs
    Pansu, Pierre
    [J]. ANNALES DE L INSTITUT FOURIER, 2016, 66 (04) : 1653 - 1665
  • [8] Extensions of maps to Moore spaces
    Jerzy Dydak
    Michael Levin
    [J]. Israel Journal of Mathematics, 2015, 207 : 981 - 1000
  • [9] Extensions of maps to Moore spaces
    Dydak, Jerzy
    Levin, Michael
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2015, 207 (02) : 981 - 1000
  • [10] Continuous selections of Lipschitz extensions in metric spaces
    Rafa Espínola
    Adriana Nicolae
    [J]. Revista Matemática Complutense, 2015, 28 : 741 - 759