Some Padé approximations and inequalities for the complete elliptic integrals of the first kind

被引:0
|
作者
Mansour Mahmoud
Mona Anis
机构
[1] King Abdulaziz University,Mathematics Department, Faculty of Science
[2] Mansoura University,Mathematics Department, Faculty of Science
关键词
Complete elliptic integrals; Hypergeometric function; Inequality; Padé approximant; Best possible constant; Error; 33E05; 26D15; 41A21;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we present Padé approximations of some functions involving complete elliptic integrals of the first kind K(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$K(x)$\end{document}, and motivated by these approximations we also present the following double inequality: 1−x21−x2+x462<2e2πK(x)−1(1+11−x2)<1−96100x21−96100x2+x464,x∈(0,1).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{1-x^{2}}{1-x^{2}+\frac{x^{4}}{62}}< \frac{2 e^{\frac{2}{\pi }K(x)-1}}{ (1+\frac{1}{\sqrt{1-x^{2}}} )}< \frac{1-\frac{96}{100}x^{2}}{1-\frac{96}{100}x^{2}+\frac{x^{4}}{64}},\quad x\in ( 0,1 ). $$\end{document} Our results have superiority over some new recent results.
引用
收藏
相关论文
共 50 条
  • [1] Some Pade approximations and inequalities for the complete elliptic integrals of the first kind
    Mahmoud, Mansour
    Anis, Mona
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2021, 2021 (01)
  • [2] Some Inequalities For Complete Elliptic Integrals
    Yin, Li
    Qi, Feng
    [J]. APPLIED MATHEMATICS E-NOTES, 2014, 14 : 193 - 199
  • [3] Bounds for complete elliptic integrals of the first kind
    Andras, Szilard
    Baricz, Arpad
    [J]. EXPOSITIONES MATHEMATICAE, 2010, 28 (04) : 357 - 364
  • [4] Sharp inequalities for the generalized elliptic integrals of the first kind
    Zhen-Hang Yang
    Jingfeng Tian
    [J]. The Ramanujan Journal, 2019, 48 : 91 - 116
  • [5] Monotonicity and sharp inequalities related to complete (p, q)-elliptic integrals of the first kind
    Wang, Fei
    Qi, Feng
    [J]. COMPTES RENDUS MATHEMATIQUE, 2020, 358 (08) : 961 - 970
  • [6] Sharp inequalities for the generalized elliptic integrals of the first kind
    Yang, Zhen-Hang
    Tian, Jingfeng
    [J]. RAMANUJAN JOURNAL, 2019, 48 (01): : 91 - 116
  • [7] Monotonicity and inequalities related to complete elliptic integrals of the second kind
    Wang, Fei
    Guo, Bai-Ni
    Qi, Feng
    [J]. AIMS MATHEMATICS, 2020, 5 (03): : 2732 - 2742
  • [8] The Chebyshev property of some complete hyper-elliptic integrals of the first kind
    Liu, Changjian
    Sun, Yangjian
    Xiao, Dongmei
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (03):
  • [9] The Chebyshev property of some complete hyper-elliptic integrals of the first kind
    Changjian Liu
    Yangjian Sun
    Dongmei Xiao
    [J]. Computational and Applied Mathematics, 2024, 43
  • [10] Some Applications of Elliptic Integrals of First Kind
    Barakat, Yasamin
    Sarmin, Nor Haniza
    [J]. JURNAL TEKNOLOGI-SCIENCES & ENGINEERING, 2013, 65 (01):