On Nonlocal Variational and Quasi-Variational Inequalities with Fractional Gradient

被引:0
|
作者
José Francisco Rodrigues
Lisa Santos
机构
[1] Universidade de Lisboa,CMAFcIO – Departamento de Matemática, Faculdade de Ciências
[2] Universidade do Minho,CMAT and Departamento de Matemática, Escola de Ciências
来源
关键词
Fractional gradient; Variational inequalities; Nonlocal quasi-variational inequalities; Gradient constraint; Lagrange multiplier;
D O I
暂无
中图分类号
学科分类号
摘要
We extend classical results on variational inequalities with convex sets with gradient constraint to a new class of fractional partial differential equations in a bounded domain with constraint on the distributional Riesz fractional gradient, the σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}-gradient (0<σ<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\sigma <1$$\end{document}). We establish continuous dependence results with respect to the data, including the threshold of the fractional σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}-gradient. Using these properties we give new results on the existence to a class of quasi-variational variational inequalities with fractional gradient constraint via compactness and via contraction arguments. Using the approximation of the solutions with a family of quasilinear penalisation problems we show the existence of generalised Lagrange multipliers for the σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}-gradient constrained problem, extending previous results for the classical gradient case, i.e., with σ=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma =1$$\end{document}.
引用
收藏
页码:835 / 852
页数:17
相关论文
共 50 条
  • [1] On Nonlocal Variational and Quasi-Variational Inequalities with Fractional Gradient
    Rodrigues, Jose Francisco
    Santos, Lisa
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2019, 80 (03): : 835 - 852
  • [2] Correction to: On Nonlocal Variational and Quasi-Variational Inequalities with Fractional Gradient
    José Francisco Rodrigues
    Lisa Santos
    [J]. Applied Mathematics & Optimization, 2021, 84 : 3565 - 3567
  • [3] On Nonlocal Variational and Quasi-Variational Inequalities with Fractional Gradient (vol 80, pg 835, 2019)
    Rodrigues, Jose Francisco
    Santos, Lisa
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 84 (03): : 3565 - 3567
  • [4] Identification in Variational and Quasi-Variational Inequalities
    Gwinner, Joachim
    Jadamba, Baasansuren
    Khan, Akhtar A.
    Sama, Miguel
    [J]. JOURNAL OF CONVEX ANALYSIS, 2018, 25 (02) : 545 - 569
  • [5] On the generalized nonlinear variational inequalities and quasi-variational inequalities
    Yu, SJ
    Yao, JC
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 198 (01) : 178 - 193
  • [6] GENERALIZED VARIATIONAL INEQUALITIES AND GENERALIZED QUASI-VARIATIONAL INEQUALITIES
    张从军
    [J]. Applied Mathematics and Mechanics(English Edition), 1993, (04) : 333 - 344
  • [7] Fractional elliptic quasi-variational inequalities: Theory and numerics
    Antil, Harbir
    Rautenberg, Carlos N.
    [J]. INTERFACES AND FREE BOUNDARIES, 2018, 20 (01) : 1 - 24
  • [8] Uniqueness for Quasi-variational Inequalities
    Axel Dreves
    [J]. Set-Valued and Variational Analysis, 2016, 24 : 285 - 297
  • [9] Regularization of quasi-variational inequalities
    Khan, Akhtar A.
    Tammer, Christiane
    Zalinescu, Constantin
    [J]. OPTIMIZATION, 2015, 64 (08) : 1703 - 1724
  • [10] ON A CLASS OF GENERALIZED VARIATIONAL-INEQUALITIES AND QUASI-VARIATIONAL INEQUALITIES
    CHANG, SS
    ZHANG, CJ
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1993, 179 (01) : 250 - 259