Universal Infinitesimal Hilbertianity of Sub-Riemannian Manifolds

被引:0
|
作者
Enrico Le Donne
Danka Lučić
Enrico Pasqualetto
机构
[1] Università di Pisa,Dipartimento di Matematica
[2] Department of Mathematics and Statistics,University of Jyvaskyla
[3] Department of Mathematics,University of Fribourg
来源
Potential Analysis | 2023年 / 59卷
关键词
Infinitesimal Hilbertianity; Sobolev space; Sub-Riemannian manifold; Sub-Finsler manifold; 53C23; 46E35; 53C17; 55R25;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that sub-Riemannian manifolds are infinitesimally Hilbertian (i.e., the associated Sobolev space is Hilbert) when equipped with an arbitrary Radon measure. The result follows from an embedding of metric derivations into the space of square-integrable sections of the horizontal bundle, which we obtain on all weighted sub-Finsler manifolds. As an intermediate tool, of independent interest, we show that any sub-Finsler distance can be monotonically approximated from below by Finsler ones. All the results are obtained in the general setting of possibly rank-varying structures.
引用
收藏
页码:349 / 374
页数:25
相关论文
共 50 条
  • [1] Universal Infinitesimal Hilbertianity of Sub-Riemannian Manifolds
    Le Donne, Enrico
    Lucic, Danka
    Pasqualetto, Enrico
    [J]. POTENTIAL ANALYSIS, 2023, 59 (01) : 349 - 374
  • [2] Infinitesimal Hilbertianity of Weighted Riemannian Manifolds
    Lucic, Danka
    Pasqualetto, Enrico
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2020, 63 (01): : 118 - 140
  • [3] On some sub-Riemannian objects in hypersurfaces of sub-Riemannian manifolds
    Tan, KH
    Yang, XP
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2004, 70 (02) : 177 - 198
  • [4] Holonomy of sub-Riemannian manifolds
    Falbel, E
    Gorodski, C
    Rumin, M
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 1997, 8 (03) : 317 - 344
  • [5] Classification of sub-Riemannian manifolds
    Vodop'yanov, SK
    Markina, IG
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 1998, 39 (06) : 1096 - 1111
  • [6] Classification of sub-Riemannian manifolds
    S. K. Vodop’yanov
    I. G. Markina
    [J]. Siberian Mathematical Journal, 1998, 39 : 1096 - 1111
  • [7] Sub-Laplacians on Sub-Riemannian Manifolds
    Maria Gordina
    Thomas Laetsch
    [J]. Potential Analysis, 2016, 44 : 811 - 837
  • [8] Sub-Laplacians on Sub-Riemannian Manifolds
    Gordina, Maria
    Laetsch, Thomas
    [J]. POTENTIAL ANALYSIS, 2016, 44 (04) : 811 - 837
  • [9] MASS TRANSPORTATION ON SUB-RIEMANNIAN MANIFOLDS
    Figalli, Alessio
    Rifford, Ludovic
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2010, 20 (01) : 124 - 159
  • [10] Quasiregular Mappings on Sub-Riemannian Manifolds
    Katrin Fässler
    Anton Lukyanenko
    Kirsi Peltonen
    [J]. The Journal of Geometric Analysis, 2016, 26 : 1754 - 1794