Graph Convolutional Network with Syntactic Dependency for Aspect-Based Sentiment Analysis

被引:0
|
作者
Fan Zhang
Wenbin Zheng
Yujie Yang
机构
[1] Chengdu University of Information Technology,School of Software Engineering
关键词
Syntactic dependency; Graph convolutional networks; Aspect-based sentiment analysis; Opinion mining;
D O I
暂无
中图分类号
学科分类号
摘要
Aspect-based sentiment analysis (ABSA) aims to mine the sentiment tendencies expressed by specific aspect terms. The studies of ABSA mainly focus on the attention-based approaches and the graph neural network approaches based on dependency trees. However, the attention-based methods usually face difficulties in capturing long-distance syntactic dependencies. Additionally, existing approaches using graph neural networks have not made sufficient exploit the syntactic dependencies among aspects and opinions. In this paper, we propose a novel Syntactic Dependency Graph Convolutional Network (SD-GCN) model for ABSA. We employ the Biaffine Attention to model the sentence syntactic dependencies and build syntactic dependency graphs from aspects and emotional words. This allows our SD-GCN to learn both the semantic relationships of aspects and the overall semantic meaning. According to these graphs, the long-distance syntactic dependency relationships are captured by GCNs, which facilitates SD-GCN to capture the syntactic dependencies between aspects and viewpoints more comprehensively, and consequently yields enhanced aspect features. We conduct extensive experiments on four aspect-level sentiment datasets. The experimental results show that our SD-GCN outperforms other methodologies. Moreover, ablation experiments and visualization of attention further substantiate the effectiveness of SD-GCN.
引用
收藏
相关论文
共 50 条
  • [1] Graph Convolutional Network with Syntactic Dependency for Aspect-Based Sentiment Analysis
    Zhang, Fan
    Zheng, Wenbin
    Yang, Yujie
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2024, 17 (01)
  • [2] Aspect-based Sentiment Analysis with Dependency Relation Graph Convolutional Network
    Wang, Yadong
    Liu, Chen
    Xie, Jinge
    Yang, Songhua
    Jia, Yuxiang
    Zan, Hongying
    [J]. 2022 INTERNATIONAL CONFERENCE ON ASIAN LANGUAGE PROCESSING (IALP 2022), 2022, : 63 - 68
  • [3] Syntactic and Semantic Aware Graph Convolutional Network for Aspect-Based Sentiment Analysis
    Chen, Junjie
    Fan, Hao
    Wang, Wencong
    [J]. IEEE ACCESS, 2024, 12 : 22500 - 22509
  • [4] RDGCN: Reinforced Dependency Graph Convolutional Network for Aspect-based Sentiment Analysis
    Zhao, Xusheng
    Peng, Hao
    Dai, Qiong
    Bai, Xu
    Peng, Huailiang
    Liu, Yanbing
    Guo, Qinglang
    Yu, Philip S.
    [J]. PROCEEDINGS OF THE 17TH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, WSDM 2024, 2024, : 976 - 984
  • [5] SSEGCN: Syntactic and Semantic Enhanced Graph Convolutional Network for Aspect-based Sentiment Analysis
    Zhang, Zheng
    Zhou, Zili
    Wang, Yanna
    [J]. NAACL 2022: THE 2022 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES, 2022, : 4916 - 4925
  • [6] Local Dependency-Enhanced Graph Convolutional Network for Aspect-Based Sentiment Analysis
    Wu, Fei
    Li, Xinfu
    [J]. APPLIED SCIENCES-BASEL, 2023, 13 (17):
  • [7] Enhanced Syntactic and Semantic Graph Convolutional Network With Contrastive Learning for Aspect-Based Sentiment Analysis
    Guan, Minzhao
    Li, Fenghuan
    Xue, Yun
    [J]. IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2024, 11 (01) : 859 - 870
  • [8] Improving context and syntactic dependency for aspect-based sentiment analysis using a fused graph attention network
    Peipei Wang
    Zhen Zhao
    [J]. Evolutionary Intelligence, 2024, 17 : 589 - 598
  • [9] Improving context and syntactic dependency for aspect-based sentiment analysis using a fused graph attention network
    Wang, Peipei
    Zhao, Zhen
    [J]. EVOLUTIONARY INTELLIGENCE, 2024, 17 (01) : 589 - 598
  • [10] Dependency-enhanced graph convolutional networks for aspect-based sentiment analysis
    Zhao, Meng
    Yang, Jing
    Shang, Fanshu
    [J]. NEURAL COMPUTING & APPLICATIONS, 2023, 35 (19): : 14195 - 14211