Stability and numerical analysis of fractional BBM-Burger equation and fractional diffusion-wave equation with Caputo derivative

被引:0
|
作者
Lalit Mohan
Amit Prakash
机构
[1] National Institute of Technology,Department of Mathematics
来源
关键词
Fractional BBM-Burger equation; Fractional diffusion-wave equation; Caputo derivative; Laplace transform; Homotopy perturbation technique; Stability analysis;
D O I
暂无
中图分类号
学科分类号
摘要
This paper gives a highly efficient technique to analyse the fractional BBM-Burger equation and fractional Diffusion-Wave equation. These equations are used to model various real-life phenomena like acoustic gravity waves, diffusion theory, anomalous diffusive systems, and wave propagation phenomena. A modified technique, which is the combination of the Homotopy perturbation method and Laplace transform, is used for getting the numerical solution. The Lyapunov function is used to investigate asymptotic stability, and the maximum absolute error for the proposed technique is also examined. The efficiency of the proposed technique is shown by computing the root mean square (RMS), L2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L}^{2},$$\end{document} and L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L}^{\infty }$$\end{document} errors and comparing the results with the other techniques.
引用
收藏
相关论文
共 50 条