Extremal (n,n + 1)-graphs with respected to zeroth- order general Randić index

被引:0
|
作者
Shubo Chen
Hanyuan Deng
机构
[1] Hunan Normal University,College of Mathematics and Computer Science
来源
关键词
(n, n+1)-graph; zeroth-order general Randic index; degree sequence;
D O I
暂无
中图分类号
学科分类号
摘要
A (n, n + 1)-graph G is a connected simple graph with n vertices and n + 1 edges. If dv denotes the degree of the vertex v, then the zeroth-order general Randić index \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_\alpha^0(G)$$\end{document} of the graph G is defined as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum\nolimits_{v\in V(G)}d_v^\alpha$$\end{document}, where α is a real number. We characterize, for any α, the (n,n + 1)-graphs with the smallest and greatest zeroth-order general Randić index.
引用
收藏
页码:555 / 564
页数:9
相关论文
共 50 条
  • [1] Extremal (n,n+1)-graphs with respected to zeroth- order general Randic index
    Chen, Shubo
    Deng, Hanyuan
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2007, 42 (03) : 555 - 564
  • [2] On zeroth-order general Randić index of conjugated unicyclic graphs
    Hongbo Hua
    Maolin Wang
    Hongzhuan Wang
    Journal of Mathematical Chemistry, 2008, 43 : 737 - 748
  • [3] On the zeroth-order general Randić index
    Minjie Zhang
    Shuchao Li
    Journal of Mathematical Chemistry, 2011, 49 : 325 - 327
  • [4] Conjugated tricyclic graphs with the maximum zeroth-order general Randić index
    Xiang-Feng Pan
    Su-Qin Liu
    Journal of Applied Mathematics and Computing, 2012, 39 (1-2) : 511 - 521
  • [5] Extremal Zeroth-Order General Randic Index Of Thorn Graphs
    Chen, Shubo
    Liu, Weijun
    Yan, Fengming
    ARS COMBINATORIA, 2011, 101 : 353 - 358
  • [6] SOME EXTREMAL GRAPHS WITH RESPECT TO THE ZEROTH-ORDER GENERAL RANDIC INDEX
    Su, Guifu
    Yan, Jingru
    Chen, Zhibing
    Rao, Gang
    UTILITAS MATHEMATICA, 2020, 114 : 73 - 98
  • [7] (n, m)-Graphs with Maximum Zeroth-Order General Randic Index for α ∈ (-1,0)
    Li, Xueliang
    Shi, Yongtang
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2009, 62 (01) : 163 - 170
  • [8] On Unicycle Graphs with Maximum and Minimum Zeroth-order Genenal Randić Index
    Hongbo Hua
    Hanyuan Deng
    Journal of Mathematical Chemistry, 2007, 41 : 173 - 181
  • [9] Connected (n, m)-graphs with minimum and maximum zeroth-order general Randic index
    Hu, Yumei
    Li, Xueliang
    Shi, Yongtang
    Xu, Tianyi
    DISCRETE APPLIED MATHEMATICS, 2007, 155 (08) : 1044 - 1054
  • [10] Super Edge-connectivity and Zeroth-order General Randi Index for -1≤α< 0
    Zhi-hong HE
    Mei LU
    Acta Mathematicae Applicatae Sinica, 2018, 34 (04) : 659 - 668