Holomorphic extension associated with Fourier-Legendre expansions

被引:0
|
作者
De Micheli E. [1 ,2 ]
Viano G.A. [1 ,2 ]
机构
[1] Consiglio Nazionale Delle Ricerche, Istituto di Cibernetica e Biofisica, Genova 16149
[2] Istituto Nazionale di Fisica Nucleare-sez. di Genova, Dipartimento di Fisica, Università di Genova, Genova 16146
来源
The Journal of Geometric Analysis | 2002年 / 12卷 / 3期
关键词
holomorphic extensions; Legendre expansions;
D O I
10.1007/BF02922046
中图分类号
学科分类号
摘要
In this article we prove that if the coefficients of a Fourier-Legendre expansion satisfy a suitable Hausdorff-type condition, then the series converges to a function which admits a holomorphic extension to a cut-plane. Furthermore, we prove that a Laplace-type (Laplace composed with Radon) transform of the function describing the jump across the cut is the unique Carlsonian interpolation of the Fourier coefficients of the expansion. We can thus reconstruct the discontinuity function from the coefficients of the Fourier-Legendre series by the use of the Pollaczek polynomials. © 2002 Mathematica Josephina, Inc.
引用
收藏
页码:355 / 374
页数:19
相关论文
共 50 条