In an extension of Newton’s method to generalized equations, we carry further the implicit function theorem paradigm and place it in the framework of a mapping acting from the parameter and the starting point to the set of all associated sequences of Newton’s iterates as elements of a sequence space. An inverse function version of this result shows that the strong regularity of the mapping associated with the Newton sequences is equivalent to the strong regularity of the generalized equation mapping.
机构:
Department of Mathematical Sciences, Cameron University, Lawton, 73505, OKDepartment of Mathematical Sciences, Cameron University, Lawton, 73505, OK
Argyros I.K.
George S.
论文数: 0引用数: 0
h-index: 0
机构:
Department of Mathematical and Computational Sciences, NIT Karnataka, MangaloreDepartment of Mathematical Sciences, Cameron University, Lawton, 73505, OK
机构:
Instituto de Matemática e Estatística, Universidade Federal de Goiás, CP-131, GO, GoiâniaInstituto de Matemática e Estatística, Universidade Federal de Goiás, CP-131, GO, Goiânia
Ferreira O.P.
Jean-Alexis C.
论文数: 0引用数: 0
h-index: 0
机构:
Département de Mathématiques et Informatique, Laboratoire LAMIA, EA4540, Université des Antilles, Campus de Fouillole, Pointe-à-PitreInstituto de Matemática e Estatística, Universidade Federal de Goiás, CP-131, GO, Goiânia
Jean-Alexis C.
Piétrus A.
论文数: 0引用数: 0
h-index: 0
机构:
Département de Mathématiques et Informatique, Laboratoire LAMIA, EA4540, Université des Antilles, Campus de Fouillole, Pointe-à-PitreInstituto de Matemática e Estatística, Universidade Federal de Goiás, CP-131, GO, Goiânia
Piétrus A.
Silva G.N.
论文数: 0引用数: 0
h-index: 0
机构:
Universidade Federal do Piauí, Departamento de Matemática, PI, TeresinaInstituto de Matemática e Estatística, Universidade Federal de Goiás, CP-131, GO, Goiânia