Decomposition of Exponential Distributions on Positive Semigroups

被引:0
|
作者
Kyle Siegrist
机构
[1] University of Alabama in Huntsville,Department of Mathematical Sciences
来源
关键词
Positive semigroup; exponential distribution; geometric distribution; sub-semigroup; quotient space;
D O I
暂无
中图分类号
学科分类号
摘要
Let (S,·) be a positive semigroup and T a sub-semigroup of S. In many natural cases, an element \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in S$$\end{document} can be factored uniquely as x=yz, where\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y \in T$$\end{document} and where z is in an associated “quotient space” S/T. If X has an exponential distribution on S, we show that Y and Z are independent and that Y has an exponential distribution on T. We prove a converse when the sub-semigroup is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_t =\{t^n : n \in\mathbb{N}\}$$\end{document} for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\in S$$\end{document}. Specifically, we show that if Yt and Zt are independent and Yt has an exponential distribution on St for each \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\in S$$\end{document}, then X has an exponential distribution on S. When applied to ([0,∞), +) and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathbb{N}, +)$$\end{document}, these results unify and extend known results on the quotient and remainder when X is divided by t.
引用
收藏
页码:204 / 220
页数:16
相关论文
共 50 条