On Feller processes with sample paths in Besov spaces

被引:0
|
作者
René L. Schilling
机构
[1] Mathematisches Institut,
[2] Universität Erlangen,undefined
[3] Bismarckstraße 1 1/2 D-91054 Erlangen,undefined
[4] Germany (e-mail: schilli@mi.uni-erlangen.de) ,undefined
来源
Mathematische Annalen | 1997年 / 309卷
关键词
Mathematics Subject Classification (1991): 60G17, 60J35, 41A15, 35S99, 60J30;
D O I
暂无
中图分类号
学科分类号
摘要
Under mild regularity assumptions on its domain the infinitesimal generator of a Feller process is known to be a pseudo-differential operator. We give a simple condition on the symbol of the generator in order to characterize the smoothness of the sample paths of real-valued Feller processes in terms of Besov spaces \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $B^s_{pq}({\Bbb R})$\end{document}. Our result extends previous papers on the paths of Gaussian, symmetric \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\alpha$\end{document}-stable [6], [20], and Lévy processes [11].
引用
收藏
页码:663 / 675
页数:12
相关论文
共 50 条