Pfaffian and Determinantal Tau Functions

被引:0
|
作者
Johan W. van de Leur
Alexander Yu. Orlov
机构
[1] Utrecht University,Mathematical Institute
[2] Institute of Oceanology RAS,International Laboratory of Representation Theory and Mathematical Physics
[3] National Research University Higher School of Economics,undefined
来源
关键词
17B65; 17B80; 35Q51; 35Q53; 35Q55; integrable systems; Tau functions; BKP; DKP; two-component Toda lattice; Pfaff lattice; free fermions;
D O I
暂无
中图分类号
学科分类号
摘要
Adler, Shiota and van Moerbeke observed that a tau function of the Pfaff lattice is a square root of a tau function of the Toda lattice hierarchy of Ueno and Takasaki. In this paper, we give a representation theoretical explanation for this phenomenon. We consider 2-BKP and two-component 2-KP tau functions. We shall show that a square of a BKP tau function is equal to a certain two-component KP tau function and a square of a 2-BKP tau function is equal to a certain two-component 2-KP tau function.
引用
下载
收藏
页码:1499 / 1531
页数:32
相关论文
共 50 条
  • [1] Pfaffian and Determinantal Tau Functions
    van de Leur, Johan W.
    Orlov, Alexander Yu.
    LETTERS IN MATHEMATICAL PHYSICS, 2015, 105 (11) : 1499 - 1531
  • [2] Partition Functions of Determinantal and Pfaffian Coulomb Gases with Radially Symmetric Potentials
    Sung-Soo Byun
    Nam-Gyu Kang
    Seong-Mi Seo
    Communications in Mathematical Physics, 2023, 401 : 1627 - 1663
  • [3] Partition Functions of Determinantal and Pfaffian Coulomb Gases with Radially Symmetric Potentials
    Byun, Sung-Soo
    Kang, Nam-Gyu
    Seo, Seong-Mi
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 401 (02) : 1627 - 1663
  • [4] Determinantal and Pfaffian identities for ninth variation skew Schur functions and Q-functions
    Foley, Angele M.
    King, Ronald C.
    EUROPEAN JOURNAL OF COMBINATORICS, 2021, 93
  • [5] GROBNER BASES AND MULTIPLICITY OF DETERMINANTAL AND PFAFFIAN IDEALS
    HERZOG, J
    TRUNG, NV
    ADVANCES IN MATHEMATICS, 1992, 96 (01) : 1 - 37
  • [6] Subschemes of Special Determinantal and Pfaffian Projective Schemes
    Ragusa, Alfio
    Zappala, Giuseppe
    RESULTS IN MATHEMATICS, 2009, 55 (1-2) : 161 - 173
  • [7] Subschemes of Special Determinantal and Pfaffian Projective Schemes
    Alfio Ragusa
    Giuseppe Zappalà
    Results in Mathematics, 2009, 55 : 161 - 173
  • [8] On sampling determinantal and Pfaffian point processes on a quantum computer
    Bardenet, Remi
    Fanuel, Michael
    Feller, Alexandre
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (05)
  • [9] Determinantal ideals, Pfaffian ideals, and the Principal Minor Theorem
    Kodiyalam, Vijay
    Lam, T. Y.
    Swan, R. G.
    NONCOMMUTATIVE RINGS, GROUP RINGS, DIAGRAM ALGEBRAS AND THEIR APPLICATIONS, 2008, 456 : 35 - +
  • [10] Determinantal Process Starting from an Orthogonal Symmetry is a Pfaffian Process
    Makoto Katori
    Journal of Statistical Physics, 2012, 146 : 249 - 263