Existence of moduli spaces for algebraic stacks

被引:0
|
作者
Jarod Alper
Daniel Halpern-Leistner
Jochen Heinloth
机构
[1] University of Washington,
[2] Cornell University,undefined
[3] Universität Duisburg-Essen,undefined
来源
Inventiones mathematicae | 2023年 / 234卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We provide necessary and sufficient conditions for when an algebraic stack admits a good moduli space and prove a semistable reduction theorem for points of algebraic stacks equipped with a Θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Theta $\end{document}-stratification. These results provide a generalization of the Keel–Mori theorem to moduli problems whose objects have positive dimensional automorphism groups and give criteria on the moduli problem to have a separated or proper good moduli space. To illustrate our method, we apply these results to construct proper moduli spaces parameterizing semistable G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{G}$\end{document}-bundles on curves and moduli spaces for objects in abelian categories.
引用
收藏
页码:949 / 1038
页数:89
相关论文
共 50 条