Positive solutions of discrete Neumann boundary value problems with sign-changing nonlinearities

被引:0
|
作者
Dingyong Bai
Johnny Henderson
Yunxia Zeng
机构
[1] Guangzhou University,School of Mathematics and Information Science
[2] Baylor University,Department of Mathematics
来源
关键词
difference equation; Neumann boundary value problem; positive solution; fixed point; 39A12; 39A10; 34B09;
D O I
暂无
中图分类号
学科分类号
摘要
Our concern is the existence of positive solutions of the discrete Neumann boundary value problem {−Δ2u(t−1)=f(t,u(t)),t∈[1,T]Z,Δu(0)=Δu(T)=0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{aligned} \left \{ \textstyle\begin{array}{@{}l} -\Delta^{2} u(t-1)=f(t, u(t)), \quad t\in[1,T]_{\mathbb{Z}},\\ \Delta u(0)=\Delta u(T)=0, \end{array}\displaystyle \right . \end{aligned}$$ \end{document} where f:[1,T]Z×R+→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f: [1,T]_{\mathbb{Z}}\times\mathbb{R}^{+}\to\mathbb{R}$\end{document} is a sign-changing function. By using the Guo-Krasnosel’skiĭ fixed point theorem, the existence and multiplicity of positive solutions are established. The nonlinear term f(t,z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f(t,z)$\end{document} may be unbounded below or nonpositive for all (t,z)∈[1,T]Z×R+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(t,z)\in[1,T]_{\mathbb{Z}}\times\mathbb{R}^{+}$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] Positive solutions of discrete Neumann boundary value problems with sign-changing nonlinearities
    Bai, Dingyong
    Henderson, Johnny
    Zeng, Yunxia
    [J]. BOUNDARY VALUE PROBLEMS, 2015, : 1 - 9
  • [2] Positive solutions of singular dirichlet boundary value problems with sign-changing nonlinearities
    Yang, G. C.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2006, 51 (9-10) : 1463 - 1470
  • [3] Sign-changing solutions to discrete fourth-order Neumann boundary value problems
    Jingping Yang
    [J]. Advances in Difference Equations, 2013
  • [4] Sign-changing solutions to discrete fourth-order Neumann boundary value problems
    Yang, Jingping
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [5] Existence of Positive, Negative, and Sign-Changing Solutions to Discrete Boundary Value Problems
    Bo Zheng
    Huafeng Xiao
    Haiping Shi
    [J]. Boundary Value Problems, 2011
  • [6] Existence of Positive, Negative, and Sign-Changing Solutions to Discrete Boundary Value Problems
    Zheng, Bo
    Xiao, Huafeng
    Shi, Haiping
    [J]. BOUNDARY VALUE PROBLEMS, 2011,
  • [7] Positive Solutions for a System of Neumann Boundary Value Problems of Second-Order Difference Equations Involving Sign-Changing Nonlinearities
    Jiang, Jiqiang
    Henderson, Johnny
    Xu, Jiafa
    Fu, Zhengqing
    [J]. JOURNAL OF FUNCTION SPACES, 2019, 2019
  • [8] Positive Solutions of Nonlinear Neumann Boundary Value Problems with Sign-Changing Green's Function
    Elsanosi, Mohammed Elnagi M.
    [J]. KYUNGPOOK MATHEMATICAL JOURNAL, 2019, 59 (01): : 65 - 71
  • [9] Multiple positive solutions for a system of impulsive integral boundary value problems with sign-changing nonlinearities
    Hao, Xinan
    Zuo, Mingyue
    Liu, Lishan
    [J]. APPLIED MATHEMATICS LETTERS, 2018, 82 : 24 - 31
  • [10] Nontrivial solutions of inverse discrete problems with sign-changing nonlinearities
    Alberto Cabada
    Nikolay D. Dimitrov
    [J]. Advances in Difference Equations, 2019