Feasible Operations on Proofs: The Logic of Proofs for Bounded Arithmetic
被引:0
|
作者:
Evan Goris
论文数: 0引用数: 0
h-index: 0
机构:The Graduate Center of the City University of New York,
Evan Goris
机构:
[1] The Graduate Center of the City University of New York,
来源:
Theory of Computing Systems
|
2008年
/
43卷
关键词:
Logic of proofs;
Bounded arithmetic;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
This paper presents a semantics for the logic of proofs
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathsf{LP}$\end{document}
in which all the operations on proofs are realized by feasibly computable functions. More precisely, we will show that the completeness of
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathsf{LP}$\end{document}
for the semantics of proofs of Peano Arithmetic extends to the semantics of proofs in Buss’ bounded arithmetic
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathsf{S}^{1}_{2}$\end{document}
. In view of applications in epistemology of
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathsf{LP}$\end{document}
in particular and justification logics in general this result shows that explicit knowledge in the propositional framework can be made computationally feasible.
机构:
Moscow MV Lomonosov State Univ, Fac Mech & Math, Dept Math Log & Theory Algorithms, Moscow 119992, RussiaMoscow MV Lomonosov State Univ, Fac Mech & Math, Dept Math Log & Theory Algorithms, Moscow 119992, Russia