An Inertial Proximal-Gradient Penalization Scheme for Constrained Convex Optimization Problems

被引:10
|
作者
Boţ R.I. [1 ]
Csetnek E.R. [1 ]
Nimana N. [2 ]
机构
[1] Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, Vienna
[2] Department of Mathematics, Faculty of Science, Naresuan University, Phitsanulok
基金
奥地利科学基金会;
关键词
Fenchel conjugate; Inertial algorithm; Penalization; Proximal-gradient algorithm;
D O I
10.1007/s10013-017-0256-9
中图分类号
学科分类号
摘要
We propose a proximal-gradient algorithm with penalization terms and inertial and memory effects for minimizing the sum of a proper, convex, and lower semicontinuous and a convex differentiable function subject to the set of minimizers of another convex differentiable function. We show that, under suitable choices for the step sizes and the penalization parameters, the generated iterates weakly converge to an optimal solution of the addressed bilevel optimization problem, while the objective function values converge to its optimal objective value. © 2017, The Author(s).
引用
收藏
页码:53 / 71
页数:18
相关论文
共 50 条
  • [1] Incremental proximal gradient scheme with penalization for constrained composite convex optimization problems
    Petrot, Narin
    Nimana, Nimit
    [J]. OPTIMIZATION, 2021, 70 (5-6) : 1307 - 1336
  • [2] Numerical experiments on stochastic block proximal-gradient type method for convex constrained optimization involving coordinatewise separable problems
    Promsinchai, Porntip
    Petrot, Narin
    [J]. CARPATHIAN JOURNAL OF MATHEMATICS, 2019, 35 (03) : 371 - 378
  • [3] New inertial proximal gradient methods for unconstrained convex optimization problems
    Peichao Duan
    Yiqun Zhang
    Qinxiong Bu
    [J]. Journal of Inequalities and Applications, 2020
  • [4] New inertial proximal gradient methods for unconstrained convex optimization problems
    Duan, Peichao
    Zhang, Yiqun
    Bu, Qinxiong
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)
  • [5] Double Inertial Proximal Gradient Algorithms for Convex Optimization Problems and Applications
    Kankam, Kunrada
    Cholamjiak, Prasit
    [J]. ACTA MATHEMATICA SCIENTIA, 2023, 43 (03) : 1462 - 1476
  • [6] DOUBLE INERTIAL PROXIMAL GRADIENT ALGORITHMS FOR CONVEX OPTIMIZATION PROBLEMS AND APPLICATIONS
    Kunrada KANKAM
    Prasit CHOLAMJIAK
    [J]. Acta Mathematica Scientia, 2023, 43 (03) : 1462 - 1476
  • [7] DISTRIBUTED PROXIMAL-GRADIENT METHOD FOR CONVEX OPTIMIZATION WITH INEQUALITY CONSTRAINTS
    Li, Jueyou
    Wu, Changzhi
    Wu, Zhiyou
    Long, Qiang
    Wang, Xiangyu
    [J]. ANZIAM JOURNAL, 2014, 56 (02): : 160 - 178
  • [8] Double Inertial Proximal Gradient Algorithms for Convex Optimization Problems and Applications
    Kunrada Kankam
    Prasit Cholamjiak
    [J]. Acta Mathematica Scientia, 2023, 43 : 1462 - 1476
  • [9] Inexact Online Proximal-gradient Method for Time-varying Convex Optimization
    Ajalloeian, Amirhossein
    Simonetto, Andrea
    Dall'Anese, Emiliano
    [J]. 2020 AMERICAN CONTROL CONFERENCE (ACC), 2020, : 2850 - 2857
  • [10] Inertial Proximal ADMM for Linearly Constrained Separable Convex Optimization
    Chen, Caihua
    Chan, Raymond H.
    Ma, Shiqian
    Yang, Junfeng
    [J]. SIAM JOURNAL ON IMAGING SCIENCES, 2015, 8 (04): : 2239 - 2267