Melnikov method for parabolic orbits

被引:0
|
作者
Josefina CASASAYAS
Patrícia FAISCA
Ana NUNES
机构
[1] Departament de Matemàtica Aplicada i Anàlisi,
[2] Universitat de Barcelona,undefined
[3] Gran Via 585,undefined
[4] E-08007 Barcelona,undefined
[5] Spain,undefined
[6] e-mail: casasaya@mat.ub.es,undefined
[7] Centro de Física da Maté,undefined
[8] ria Condensada CFMC,undefined
[9] Universidade de Lisboa,undefined
[10] Av. Prof. Gama Pinto 2,undefined
[11] P-1649-003 Lisboa,undefined
[12] Portugal,undefined
[13] e-mail: patnev@alf1.cii.fc.ul.pt ,undefined
[14] Centro de Matemática e Aplicações Fundamentais CMAF,undefined
[15] Universidade de Lisboa,undefined
[16] Av. Prof. Gama Pinto 2,undefined
[17] P-1649-003 Lisboa,undefined
[18] Portugal,undefined
[19] e-mail: anunes@lmc.fc.ul.pt ,undefined
关键词
2000Mathematics Subject Classification: 37C29, 34C28, 70F05.¶,Key words: Melnikov's method, homoclinic orbits, parabolic orbits.;
D O I
暂无
中图分类号
学科分类号
摘要
The present work completes the study of the conditions under which Melnikov method can be used when the unperturbed system has a parabolic periodic orbit with a homoclinic loop, by considering the case of orbits whose associated Poicaré map has linear part equal to the identity. The result is that the conditions for the persistence under perturbation of the invariant manifolds also ensure the convergence of the Melnikov integral and hence the applicability of the method.
引用
收藏
页码:119 / 131
页数:12
相关论文
共 50 条