The second Sandia Fracture Challenge: predictions of ductile failure under quasi-static and moderate-rate dynamic loading

被引:0
|
作者
B. L. Boyce
S. L. B. Kramer
T. R. Bosiljevac
E. Corona
J. A. Moore
K. Elkhodary
C. H. M. Simha
B. W. Williams
A. R. Cerrone
A. Nonn
J. D. Hochhalter
G. F. Bomarito
J. E. Warner
B. J. Carter
D. H. Warner
A. R. Ingraffea
T. Zhang
X. Fang
J. Lua
V. Chiaruttini
M. Mazière
S. Feld-Payet
V. A. Yastrebov
J. Besson
J.-L. Chaboche
J. Lian
Y. Di
B. Wu
D. Novokshanov
N. Vajragupta
P. Kucharczyk
V. Brinnel
B. Döbereiner
S. Münstermann
M. K. Neilsen
K. Dion
K. N. Karlson
J. W. Foulk
A. A. Brown
M. G. Veilleux
J. L. Bignell
S. E. Sanborn
C. A. Jones
P. D. Mattie
K. Pack
T. Wierzbicki
S.-W. Chi
S.-P. Lin
A. Mahdavi
J. Predan
机构
[1] Sandia National Laboratories,Onera
[2] Northwestern University,MINES ParisTech, Centre des Matériaux, CNRS UMR 7633
[3] The American University in Cairo,undefined
[4] CanmetMATERIALS,undefined
[5] Natural Resources Canada,undefined
[6] GE Global Research Center,undefined
[7] Ostbayerische Technische Hochschule (OTH) Regensburg,undefined
[8] NASA Langley Research Center,undefined
[9] Cornell University,undefined
[10] Global Engineering and Materials Inc.,undefined
[11] Université Paris-Saclay,undefined
[12] PSL Research University,undefined
[13] RWTH Aachen University,undefined
[14] Sandia National Laboratories,undefined
[15] Massachusetts Institute of Technology,undefined
[16] University of Illinois at Chicago,undefined
[17] University of Maribor,undefined
[18] University of Texas at Austin,undefined
[19] Thinkviewer LLC,undefined
来源
关键词
Fracture; Rupture; Tearing; Deformation; Plasticity; Metal; Alloy; Simulation; Prediction; Modeling;
D O I
暂无
中图分类号
学科分类号
摘要
Ductile failure of structural metals is relevant to a wide range of engineering scenarios. Computational methods are employed to anticipate the critical conditions of failure, yet they sometimes provide inaccurate and misleading predictions. Challenge scenarios, such as the one presented in the current work, provide an opportunity to assess the blind, quantitative predictive ability of simulation methods against a previously unseen failure problem. Rather than evaluate the predictions of a single simulation approach, the Sandia Fracture Challenge relies on numerous volunteer teams with expertise in computational mechanics to apply a broad range of computational methods, numerical algorithms, and constitutive models to the challenge. This exercise is intended to evaluate the state of health of technologies available for failure prediction. In the first Sandia Fracture Challenge, a wide range of issues were raised in ductile failure modeling, including a lack of consistency in failure models, the importance of shear calibration data, and difficulties in quantifying the uncertainty of prediction [see Boyce et al. (Int J Fract 186:5–68, 2014) for details of these observations]. This second Sandia Fracture Challenge investigated the ductile rupture of a Ti–6Al–4V sheet under both quasi-static and modest-rate dynamic loading (failure in ∼\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim $$\end{document}0.1 s). Like the previous challenge, the sheet had an unusual arrangement of notches and holes that added geometric complexity and fostered a competition between tensile- and shear-dominated failure modes. The teams were asked to predict the fracture path and quantitative far-field failure metrics such as the peak force and displacement to cause crack initiation. Fourteen teams contributed blind predictions, and the experimental outcomes were quantified in three independent test labs. Additional shortcomings were revealed in this second challenge such as inconsistency in the application of appropriate boundary conditions, need for a thermomechanical treatment of the heat generation in the dynamic loading condition, and further difficulties in model calibration based on limited real-world engineering data. As with the prior challenge, this work not only documents the ‘state-of-the-art’ in computational failure prediction of ductile tearing scenarios, but also provides a detailed dataset for non-blind assessment of alternative methods.
引用
收藏
页码:5 / 100
页数:95
相关论文
共 50 条
  • [1] The second Sandia Fracture Challenge: predictions of ductile failure under quasi-static and moderate-rate dynamic loading
    Boyce, B. L.
    Kramer, S. L. B.
    Bosiljevac, T. R.
    Corona, E.
    Moore, J. A.
    Elkhodary, K.
    Simha, C. H. M.
    Williams, B. W.
    Cerrone, A. R.
    Nonn, A.
    Hochhalter, J. D.
    Bomarito, G. F.
    Warner, J. E.
    Carter, B. J.
    Warner, D. H.
    Ingraffea, A. R.
    Zhang, T.
    Fang, X.
    Lua, J.
    Chiaruttini, V.
    Maziere, M.
    Feld-Payet, S.
    Yastrebov, V. A.
    Besson, J.
    Chaboche, J. -L.
    Lian, J.
    Di, Y.
    Wu, B.
    Novokshanov, D.
    Vajragupta, N.
    Kucharczyk, P.
    Brinnel, V.
    Doebereiner, B.
    Muenstermann, S.
    Neilsen, M. K.
    Dion, K.
    Karlson, K. N.
    Foulk, J. W., III
    Brown, A. A.
    Veilleux, M. G.
    Bignell, J. L.
    Sanborn, S. E.
    Jones, C. A.
    Mattie, P. D.
    Pack, K.
    Wierzbicki, T.
    Chi, S. -W.
    Lin, S. -P.
    Mahdavi, A.
    Predan, J.
    INTERNATIONAL JOURNAL OF FRACTURE, 2016, 198 (1-2) : 5 - 100
  • [2] The Sandia Fracture Challenge: How Ductile Failure Predictions Fare
    Kramer, Sharlotte
    Boyce, Brad
    Jones, Amanda
    Gearhart, Jhana
    Salzbrenner, Brad
    FRACTURE, FATIGUE, FAILURE AND DAMAGE EVOLUTION, VOL 6, 2019, : 25 - 29
  • [3] Dynamic fracture of granular material under quasi-static loading
    Sagy, A
    Cohen, G
    Reches, Z
    Fineberg, J
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2006, 111 (B4)
  • [4] PRELIMINARY FRACTURE OF ROCKS AS A STAGE OF THE FAILURE PROCESS UNDER QUASI-STATIC AND DYNAMIC LOADING
    Viktorov, S. D.
    Kochanov, A. N.
    Odintsev, V. N.
    JOURNAL OF MINING INSTITUTE, 2007, 171 : 153 - 157
  • [5] Validation of the ductile fracture modeling of CGI at quasi-static loading conditions
    Razanica, Senad
    Josefson, Lennart B.
    Larsson, Ragnar
    Sjogren, Torsten
    INTERNATIONAL JOURNAL OF DAMAGE MECHANICS, 2021, 30 (09) : 1400 - 1422
  • [6] Numerical Study on Ductile Failure Behaviours of Steel Structures under Quasi-Static Punch Loading
    Cai, Wei
    Zhou, Zhihui
    Qian, Xudong
    Cao, Dongfeng
    Li, Shuxin
    Zhu, Ling
    Hu, Haixiao
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2023, 11 (06)
  • [7] HENS EGG - SHELL FRACTURE UNDER QUASI-STATIC AND STATIC LOADING
    CARTER, TC
    BRITISH POULTRY SCIENCE, 1978, 19 (02) : 249 - 259
  • [8] Characterizing dynamic fracture behavior of adhesive joints under quasi-static and impact loading
    Simon, Joshua C.
    Johnson, Eric
    Dillard, David A.
    Advances in Adhesives, Adhesion Science, and Testing, 2005, 1463 : 53 - 71
  • [9] Quasi-static and dynamic failure evolution of titanium alloy under forced shear loading
    Fu, Ying-Qian
    Dong, Xin-Long
    Hu, Hong-Zhi
    Zhongguo Youse Jinshu Xuebao/Chinese Journal of Nonferrous Metals, 2015, 25 (11): : 3092 - 3099
  • [10] Quasi-static and dynamic fracture behavior of lead zirconate titanate: A study of poling and loading rate
    Mendoza, Isabella
    Drury, Daniel
    Matejunas, Andrew
    Ivy, Jacob
    Koumlis, Stylianos
    Jewell, Peter
    Brennecka, Geoff
    Lamberson, Leslie
    ENGINEERING FRACTURE MECHANICS, 2021, 247