Contractible affine surfaces with quotient singularities

被引:0
|
作者
Mariusz Koras
Peter Russell
机构
[1] Institute of Mathematics,
[2] Warsaw University,undefined
[3] Department of Mathematics,undefined
[4] McGill University,undefined
来源
Transformation Groups | 2007年 / 12卷
关键词
Irreducible Component; Rational Curf; Dual Graph; Singular Locus; Quotient Singularity;
D O I
暂无
中图分类号
学科分类号
摘要
We consider contractible affine surfaces of negative Kodaira dimension with only quotient singularities. We prove that the smooth locus of such a surface has negative Kodaira dimension. It follows that if such a surface has only one singular point, then it is isomorphic to a quotient C2/G, where G is a finite group acting linearly on C2.
引用
收藏
页码:293 / 340
页数:47
相关论文
共 50 条
  • [1] Contractible affine surfaces with quotient singularities
    Koras, Mariusz
    Russell, Peter
    [J]. TRANSFORMATION GROUPS, 2007, 12 (02) : 293 - 340
  • [2] Wild quotient singularities of surfaces
    Lorenzini, Dino
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2013, 275 (1-2) : 211 - 232
  • [3] Wild quotient singularities of surfaces
    Dino Lorenzini
    [J]. Mathematische Zeitschrift, 2013, 275 : 211 - 232
  • [4] Affine Maximal Surfaces with Singularities
    Aledo, Juan A.
    Martinez, Antonio
    Milan, Francisco
    [J]. RESULTS IN MATHEMATICS, 2009, 56 (1-4) : 91 - 107
  • [5] Affine Maximal Surfaces with Singularities
    Juan A. Aledo
    Antonio Martínez
    Francisco Milán
    [J]. Results in Mathematics, 2009, 56
  • [6] Smoothable del Pezzo surfaces with quotient singularities
    Hacking, Paul
    Prokhorov, Yuri
    [J]. COMPOSITIO MATHEMATICA, 2010, 146 (01) : 169 - 192
  • [7] COMPUTATION OF THE LOCAL EULER INVARIANT FOR THE QUOTIENT SINGULARITIES OF SURFACES
    GONZALEZSPRINBERG, G
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1979, 288 (21): : 989 - 992
  • [8] Cyclic Branched Coverings of Surfaces with Abelian Quotient Singularities
    Bartolo, Enrique Artal
    Cogolludo-Agustin, Jose Ignacio
    Martin-Morales, Jorge
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2022, 71 (01) : 213 - 249
  • [9] 2 DIMENSIONAL QUOTIENT SINGULARITIES DEFORM TO QUOTIENT SINGULARITIES
    ESNAULT, H
    VIEHWEG, E
    [J]. MATHEMATISCHE ANNALEN, 1985, 271 (03) : 439 - 449
  • [10] SINGULARITIES OF QUOTIENT SURFACES OF K3 SURFACES WITH AN AUTOMORPHISM OF MAXIMUM ORDER
    Taki, Shingo
    [J]. MATHEMATICAL REPORTS, 2023, 25 (03): : 1 - 11