Solar Filament Recognition Based on Deep Learning

被引:0
|
作者
Gaofei Zhu
Ganghua Lin
Dongguang Wang
Suo Liu
Xiao Yang
机构
[1] Chinese Academy of Sciences,National Astronomical Observatories
[2] University of Chinese Academy of Sciences,Key Laboratory of Solar Activity
[3] National Astronomical Observatories,School of Astronomy and Space Sciences
[4] University of Chinese Academy of Sciences,undefined
来源
Solar Physics | 2019年 / 294卷
关键词
Filaments; Prominences; Image processing; Deep learning;
D O I
暂无
中图分类号
学科分类号
摘要
The paper presents a reliable method using deep learning to recognize solar filaments in Hα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\upalpha$\end{document} full-disk solar images automatically. This method cannot only identify filaments accurately but also minimize the effects of noise points of the solar images. Firstly, a raw filament dataset is set up, consisting of tens of thousands of images required for deep learning. Secondly, an automated method for solar filament identification is developed using the U-Net deep convolutional network. To test the performance of the method, a dataset with 60 pairs of manually corrected Hα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\upalpha$\end{document} images is employed. These images are obtained from the Big Bear Solar Observatory/Full-Disk H-alpha Patrol Telescope (BBSO/FDHA) in 2013. Cross-validation indicates that the method can efficiently identify filaments in full-disk Hα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\upalpha$\end{document} images.
引用
收藏
相关论文
共 50 条
  • [1] Solar Filament Recognition Based on Deep Learning
    Zhu, Gaofei
    Lin, Ganghua
    Wang, Dongguang
    Liu, Suo
    Yang, Xiao
    SOLAR PHYSICS, 2019, 294 (09)
  • [2] Solar-Filament Detection and Classification Based on Deep Learning
    Guo, Xulong
    Yang, Yunfei
    Feng, Song
    Bai, Xianyong
    Liang, Bo
    Dai, Wei
    SOLAR PHYSICS, 2022, 297 (08)
  • [3] Solar-Filament Detection and Classification Based on Deep Learning
    Xulong Guo
    Yunfei Yang
    Song Feng
    Xianyong Bai
    Bo Liang
    Wei Dai
    Solar Physics, 2022, 297
  • [4] Solar Filament Detection Based on an Improved Deep Learning Model
    Shang, Zhenhong
    Song, Mingzhao
    Li, Runxin
    APPLIED SCIENCES-BASEL, 2024, 14 (09):
  • [5] Image Recognition Based on Deep Learning
    Wu, Meiyin
    Chen, Li
    2015 CHINESE AUTOMATION CONGRESS (CAC), 2015, : 542 - 546
  • [6] Face Recognition Based on Deep Learning
    Wang, Weihong
    Yang, Jie
    Xiao, Jianwei
    Li, Sheng
    Zhou, Dixin
    HUMAN CENTERED COMPUTING, HCC 2014, 2015, 8944 : 812 - 820
  • [7] Targets Recognition Based on Deep Learning
    Liu, Huan
    Kuang, Lei
    Liu, Qing Huo
    2019 PHOTONICS & ELECTROMAGNETICS RESEARCH SYMPOSIUM - FALL (PIERS - FALL), 2019, : 1393 - 1400
  • [8] Plate Recognition Based on Deep Learning
    Tang, Ling
    Gao, Zhibin
    Huang, Lianfen
    PROCEEDINGS OF 2018 12TH IEEE INTERNATIONAL CONFERENCE ON ANTI-COUNTERFEITING, SECURITY, AND IDENTIFICATION (ASID), 2018, : 116 - 120
  • [9] A deep learning method for the recognition of solar radio burst spectrum
    Guo, Jun-Cheng
    Yan, Fa-Bao
    Wan, Gang
    Hu, Xin-Jie
    Wang, Shuai
    PEERJ COMPUTER SCIENCE, 2022, 8
  • [10] A deep learning method for the recognition of solar radio burst spectrum
    Guo J.-C.
    Yan F.-B.
    Wan G.
    Hu X.-J.
    Wang S.
    PeerJ Computer Science, 2022, 8