Decoding of top-down cognitive processing for SSVEP-controlled BMI

被引:0
|
作者
Byoung-Kyong Min
Sven Dähne
Min-Hee Ahn
Yung-Kyun Noh
Klaus-Robert Müller
机构
[1] Korea University,Department of Brain and Cognitive Engineering
[2] Machine Learning Group,Department of Mechanical and Aerospace Engineering
[3] Berlin Institute of Technology,undefined
[4] Seoul National University,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We present a fast and accurate non-invasive brain-machine interface (BMI) based on demodulating steady-state visual evoked potentials (SSVEPs) in electroencephalography (EEG). Our study reports an SSVEP-BMI that, for the first time, decodes primarily based on top-down and not bottom-up visual information processing. The experimental setup presents a grid-shaped flickering line array that the participants observe while intentionally attending to a subset of flickering lines representing the shape of a letter. While the flickering pixels stimulate the participant’s visual cortex uniformly with equal probability, the participant’s intention groups the strokes and thus perceives a ‘letter Gestalt’. We observed decoding accuracy of 35.81% (up to 65.83%) with a regularized linear discriminant analysis; on average 2.05-fold, and up to 3.77-fold greater than chance levels in multi-class classification. Compared to the EEG signals, an electrooculogram (EOG) did not significantly contribute to decoding accuracies. Further analysis reveals that the top-down SSVEP paradigm shows the most focalised activation pattern around occipital visual areas; Granger causality analysis consistently revealed prefrontal top-down control over early visual processing. Taken together, the present paradigm provides the first neurophysiological evidence for the top-down SSVEP BMI paradigm, which potentially enables multi-class intentional control of EEG-BMIs without using gaze-shifting.
引用
收藏
相关论文
共 50 条
  • [1] Decoding of top-down cognitive processing for SSVEP-controlled BMI
    Min, Byoung-Kyong
    Daehne, Sven
    Ahn, Min-Hee
    Noh, Yung-Kyun
    Mueller, Klaus-Robert
    SCIENTIFIC REPORTS, 2016, 6
  • [2] Online Implementation of Top-Down SSVEP-BMI
    Ahn, Min-Hee
    Min, Byoung-Kyong
    2017 5TH INTERNATIONAL WINTER CONFERENCE ON BRAIN-COMPUTER INTERFACE (BCI), 2017, : 27 - 29
  • [3] Applying deep-learning to a top-down SSVEP BMI
    Ahn, Min-Hee
    Min, Byoung-Kyong
    2018 6TH INTERNATIONAL CONFERENCE ON BRAIN-COMPUTER INTERFACE (BCI), 2018, : 161 - 163
  • [4] An online top-down SSVEP-BMI for augmented reality
    Kim, Ji-Wan
    Kim, Maeng-Nam
    Kang, Dong-Hyeon
    Ahn, Min-Hee
    Kim, Hyun-Seok
    Min, Byoung-Kyong
    2019 7TH INTERNATIONAL WINTER CONFERENCE ON BRAIN-COMPUTER INTERFACE (BCI), 2019, : 171 - 173
  • [5] Cognitive basis of hallucinations in schizophrenia: Role of top-down processing
    Aleman, A
    Bocker, KB
    Hijman, R
    De Haan, EH
    Kahn, RS
    SCHIZOPHRENIA RESEARCH, 2003, 60 (01) : 163 - 163
  • [6] Decoding the chromosome core with top-down MS
    Jonscher, KR
    ANALYTICAL CHEMISTRY, 2006, 78 (13) : 4244 - 4244
  • [7] Cognitive basis of hallucinations in schizophrenia:: role of top-down information processing
    Aleman, A
    Böcker, KBE
    Hijman, R
    de Haan, EHF
    Kahn, RS
    SCHIZOPHRENIA RESEARCH, 2003, 64 (2-3) : 175 - 185
  • [8] Distinct modes of top-down cognitive processing in the ventral visual cortex
    Jo, Han-Gue
    Kellermann, Thilo
    Baumann, Conrad
    Ito, Junji
    Holthausen, Barbara Schulte
    Schneider, Frank
    Gruen, Sonja
    Habel, Ute
    NEUROIMAGE, 2019, 193 : 201 - 213
  • [9] Top-down predictions in the cognitive brain
    Kveraga, Kestutis
    Ghuman, Avniel S.
    Bar, Moshe
    BRAIN AND COGNITION, 2007, 65 (02) : 145 - 168
  • [10] Top-down influences on visual processing
    Gilbert, Charles D.
    Li, Wu
    NATURE REVIEWS NEUROSCIENCE, 2013, 14 (05) : 350 - 363