Static, Quasistatic and Dynamic Analysis for Scaled Perona-Malik Functionals

被引:0
|
作者
Andrea Braides
Valerio Vallocchia
机构
[1] Università di Roma “Tor Vergata”,Dipartimento di Matematica
来源
关键词
Perona-Malik functional; Image processing; Fracture mechanics; Minimizing movements; Variational evolution; Local minima; -convergence; 49J45; 74S20; 49M25; 94A08;
D O I
暂无
中图分类号
学科分类号
摘要
We present an asymptotic description of local minimization problems, and of quasistatic and dynamic evolutions of discrete one-dimensional scaled Perona-Malik functionals. The scaling is chosen in such a way that these energies Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varGamma $\end{document}-converge to the Mumford-Shah functional by a result by Morini and Negri. This continuum approximation still provides a good description of quasistatic and gradient-flow type evolutions, while it must be suitably corrected to maintain the pattern of local minima and to account for long-time evolution.
引用
收藏
页码:79 / 107
页数:28
相关论文
共 50 条
  • [1] Static, Quasistatic and Dynamic Analysis for Scaled Perona-Malik Functionals
    Braides, Andrea
    Vallocchia, Valerio
    ACTA APPLICANDAE MATHEMATICAE, 2018, 156 (01) : 79 - 107
  • [2] An analysis of the Perona-Malik scheme
    Esedoglu, S
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2001, 54 (12) : 1442 - 1487
  • [3] The Perona-Malik paradox
    Kichenassamy, S
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1997, 57 (05) : 1328 - 1342
  • [4] GAMMA-CONVERGENCE OF CERTAIN MODIFIED PERONA-MALIK FUNCTIONALS
    Tiirola, Juha
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2017, 23 (04) : 1499 - 1513
  • [5] The Γ-limit for singularly perturbed functionals of Perona-Malik type in arbitrary dimension
    Bellettini, Giovanni
    Chambolle, Antonin
    Goldman, Michael
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2014, 24 (06): : 1091 - 1113
  • [6] On the convexification of the Perona-Malik diffusion model
    Maiseli, Baraka Jacob
    SIGNAL IMAGE AND VIDEO PROCESSING, 2020, 14 (06) : 1283 - 1291
  • [7] Ramp preserving Perona-Malik model
    Chen, Qiang
    Montesinos, Philippe
    Sen Sun, Quan
    Xia, De Shen
    SIGNAL PROCESSING, 2010, 90 (06) : 1963 - 1975
  • [8] Wavefronts for Generalized Perona-Malik Equations
    Corli, Andrea
    Malaguti, Luisa
    Sovrano, Elisa
    HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS, VOL I, HYP2022, 2024, 34 : 227 - 236
  • [9] The Magic of Nonlocal Perona-Malik Diffusion
    Li, Xin
    IEEE SIGNAL PROCESSING LETTERS, 2011, 18 (09) : 533 - 534
  • [10] The Γ-limit and the related gradient flow for singular perturbation functionals of Perona-Malik type
    Bellettini, G.
    Fusco, G.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 360 (09) : 4929 - 4987