eventually positive solution;
deviating argument;
asymptotic behavior;
34K11;
34K12;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
The following first order nonlinear differential equation with a deviating argument \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$
x'(t) + p(t)[x(\tau (t))]^\alpha = 0
$$\end{document} is considered, where α > 0, α ≠ 1, p ∈ C[t0; ∞), p(t) > 0 for t ≧ t0, τ ∈ C[t0; ∞), limt→∞τ(t) = ∞, τ(t) < t for t ≧ t0. Every eventually positive solution x(t) satisfying limt→∞x(t) ≧ 0. The structure of solutions x(t) satisfying limt→∞x(t) > 0 is well known. In this paper we study the existence, nonexistence and asymptotic behavior of eventually positive solutions x(t) satisfying limt→∞x(t) = 0.
机构:
Senior High Sch, Hiroshima Nagisa Jr High Sch, Saeki Ku, Hiroshima 7315138, JapanSenior High Sch, Hiroshima Nagisa Jr High Sch, Saeki Ku, Hiroshima 7315138, Japan
机构:
Hunan Normal Univ, Dept Math, Changsha 410081, Hunan, Peoples R China
Anhui Univ Sci & Technol, Sch Math & Big Data, Huainan 232001, Anhui, Peoples R ChinaHunan Normal Univ, Dept Math, Changsha 410081, Hunan, Peoples R China
Kong, Fanchao
Liang, Zaitao
论文数: 0引用数: 0
h-index: 0
机构:
Hohai Univ, Dept Math, Coll Sci, Nanjing 210098, Jiangsu, Peoples R China
Anhui Univ Sci & Technol, Sch Math & Big Data, Huainan 232001, Anhui, Peoples R ChinaHunan Normal Univ, Dept Math, Changsha 410081, Hunan, Peoples R China
机构:
Univ Arts & Sci, Dept Math, Changde 415000, Hunan, Peoples R ChinaUniv Arts & Sci, Dept Math, Changde 415000, Hunan, Peoples R China
Xiong, Wanmin
Yue, Guangxue
论文数: 0引用数: 0
h-index: 0
机构:
Jiaxing Univ, Coll Math & Informat Engn, Jiaxing 314001, Zhejiang, Peoples R ChinaUniv Arts & Sci, Dept Math, Changde 415000, Hunan, Peoples R China