Generalization of prime ideals in Mn(N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_n(N)$$\end{document}-group Nn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N^{n}$$\end{document}

被引:0
|
作者
S. Tapatee
B. S. Kedukodi
S. Juglal
P. K. Harikrishnan
S. P. Kuncham
机构
[1] Manipal institute of Technology,Department of Mathematics
[2] Manipal Academy of Higher Education,Department of Mathematics and Applied Mathematics
[3] Nelson Mandela University,undefined
关键词
Nearring; Matrix nearring; Prime ideal; Absorbing ideal; 16Y30;
D O I
10.1007/s12215-021-00682-y
中图分类号
学科分类号
摘要
The notion of a matrix nearring over an arbitrary nearring was introduced by (Meldrum and Walt Arch. Math. 47(4): 312–319, 1986). In this paper, we define the notions such as weakly τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau$$\end{document}-prime (τ=0,c,3,e)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\tau =0,c,3,e)$$\end{document} ideals of an N-group G,  which are the generalization of the classes of τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau$$\end{document}-prime ideals of G, and provide suitable examples to distinguish between the two classes. We extend the concept to obtain the one-one correspondence between weakly τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau$$\end{document}-prime ideals (τ=0,c,3,e)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\tau =0,c,3,e)$$\end{document} of N-group (over itself) and those of Mn(N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_n(N)$$\end{document}-group Nn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N^{n}$$\end{document}, where Mn(N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_n(N)$$\end{document} is the matrix nearring over the nearring N. Further, we prove the correspondence between weakly 2-absorbing ideals of these classes.
引用
收藏
页码:449 / 465
页数:16
相关论文
共 50 条