Local smoothing regression with functional data

被引:0
|
作者
K. Benhenni
F. Ferraty
M. Rachdi
P. Vieu
机构
[1] Université de Grenoble,
[2] LJK UMR CNRS 5224,undefined
[3] Université Paul Sabatier,undefined
[4] LSP UMR CNRS 5583,undefined
来源
Computational Statistics | 2007年 / 22卷
关键词
Cross-validation; Functional data; Local versus global bandwidths; Regression operator;
D O I
暂无
中图分类号
学科分类号
摘要
Kernel estimates of a regression operator are investigated when the explanatory variable is of functional type. The bandwidths are locally chosen by a data-driven method based on the minimization of a functional version of a cross-validated criterion. A short asymptotic theoretical support is provided and the main body of this paper is devoted to various finite sample size applications. In particular, it is shown through some simulations, that a local bandwidth choice enables to capture some underlying heterogeneous structures in the functional dataset. As a consequence, the estimation of the relationship between a functional variable and a scalar response, and hence the prediction, can be significantly improved by using local smoothing parameter selection rather than global one. This is also confirmed from a chemometrical real functional dataset. These improvements are much more important than in standard finite dimensional setting.
引用
收藏
页码:353 / 369
页数:16
相关论文
共 50 条
  • [1] Local smoothing regression with functional data
    Benhenni, K.
    Ferraty, F.
    Rachdi, M.
    Vieu, P.
    [J]. COMPUTATIONAL STATISTICS, 2007, 22 (03) : 353 - 369
  • [2] Local linear regression for functional data
    Berlinet, A.
    Elamine, A.
    Mas, A.
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2011, 63 (05) : 1047 - 1075
  • [3] Local linear regression for functional data
    A. Berlinet
    A. Elamine
    A. Mas
    [J]. Annals of the Institute of Statistical Mathematics, 2011, 63 : 1047 - 1075
  • [4] Nonparametric regression for functional data: Automatic smoothing parameter selection
    Rachdi, M.
    Vieu, P.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2007, 137 (09) : 2784 - 2801
  • [5] Local linear-kNN smoothing for semi-functional partial linear regression
    Houda, Kedir Nassima
    Tawfik, Benchikh
    Amina, Naceri
    Omar, Fetitah
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2024, 53 (02): : 537 - 555
  • [6] Automatic smoothing parameter selection for the nonparametric regression estimation of functional data.
    Rachdi, M
    Vieu, P
    [J]. COMPTES RENDUS MATHEMATIQUE, 2005, 341 (06) : 365 - 368
  • [7] Adaptive smoothing of images with local weighted regression
    Levenson, MS
    Bright, DS
    Sethuraman, J
    [J]. STATISTICAL AND STOCHASTIC METHODS FOR IMAGE PROCESSING, 1996, 2823 : 85 - 99
  • [8] Local adaptive smoothing in kernel regression estimation
    Zheng, Qi
    Kulasekera, K. B.
    Gallagher, Colin
    [J]. STATISTICS & PROBABILITY LETTERS, 2010, 80 (7-8) : 540 - 547
  • [9] Binary quantile regression with local polynomial smoothing
    Chen, Songnian
    Zhang, Hanghui
    [J]. JOURNAL OF ECONOMETRICS, 2015, 189 (01) : 24 - 40
  • [10] Local composite quantile regression smoothing: an efficient and safe alternative to local polynomial regression
    Kai, Bo
    Li, Runze
    Zou, Hui
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2010, 72 : 49 - 69