On two simple virtual Kirchhoff-Love plate elements for isotropic and anisotropic materials

被引:0
|
作者
P. Wriggers
B. Hudobivnik
O. Allix
机构
[1] Leibniz Universität Hannover,Institute for Continuum Mechanics
[2] Leibniz Universität Hannover,Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering
[3] Université Paris-Saclay, Innovation Across Disciplines)
来源
Computational Mechanics | 2022年 / 69卷
关键词
Virtual element method (VEM); Kirchhoff-Love theory; Virtual plate element; Stabilisation; Isotropic/anisotropic material; Finite plate element;
D O I
暂无
中图分类号
学科分类号
摘要
The virtual element method allows to revisit the construction of Kirchhoff-Love elements because the C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document}-continuity condition is much easier to handle in the VEM framework than in the traditional Finite Elements methodology. Here we study the two most simple VEM elements suitable for Kirchhoff-Love plates as stated in Brezzi and Marini (Comput Methods Appl Mech Eng 253:455–462, 2013). The formulation contains new ideas and different approaches for the stabilisation needed in a virtual element, including classic and energy stabilisations. An efficient stabilisation is crucial in the case of C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document}-continuous elements because the rank deficiency of the stiffness matrix associated to the projected part of the ansatz function is larger than for C0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^0$$\end{document}-continuous elements. This paper aims at providing engineering inside in how to construct simple and efficient virtual plate elements for isotropic and anisotropic materials and at comparing different possibilities for the stabilisation. Different examples and convergence studies discuss and demonstrate the accuracy of the resulting VEM elements. Finally, reduction of virtual plate elements to triangular and quadrilateral elements with 3 and 4 nodes, respectively, yields finite element like plate elements. It will be shown that these C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document}-continuous elements can be easily incorporated in legacy codes and demonstrate an efficiency and accuracy that is much higher than provided by traditional finite elements for thin plates.
引用
收藏
页码:615 / 637
页数:22
相关论文
共 50 条
  • [1] On two simple virtual Kirchhoff-Love plate elements for isotropic and anisotropic materials
    Wriggers, P.
    Hudobivnik, B.
    Allix, O.
    COMPUTATIONAL MECHANICS, 2022, 69 (02) : 615 - 637
  • [2] On triangular virtual elements for Kirchhoff-Love shells
    Wu, T. P.
    Pimenta, P. M.
    Wriggers, P.
    ARCHIVE OF APPLIED MECHANICS, 2024, 94 (09) : 2371 - 2404
  • [3] MIXED FINITE ELEMENTS FOR KIRCHHOFF-LOVE PLATE BENDING
    Uhrer, Thomas ubull
    Heuer, Norbert
    MATHEMATICS OF COMPUTATION, 2024,
  • [4] OPTIMAL STABILITY IN THE IDENTIFICATION OF A RIGID INCLUSION IN AN ISOTROPIC KIRCHHOFF-LOVE PLATE
    Morassi, Antonino
    Rosset, Edi
    Vessella, Sergio
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2019, 51 (02) : 731 - 747
  • [5] The virtual element method for an obstacle problem of a Kirchhoff-Love plate
    Feng, Fang
    Han, Weimin
    Huang, Jianguo
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 103
  • [6] Continuous piecewise linear finite elements for the Kirchhoff-Love plate equation
    Larsson, Karl
    Larson, Mats G.
    NUMERISCHE MATHEMATIK, 2012, 121 (01) : 65 - 97
  • [7] The linearization of the Dirichlet-to-Neumann map in the anisotropic Kirchhoff-Love plate theory
    Ikehata, M
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1996, 56 (05) : 1329 - 1352
  • [8] Isogeometric shell analysis with Kirchhoff-Love elements
    Kiendl, J.
    Bletzinger, K-U.
    Linhard, J.
    Wuechner, R.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2009, 198 (49-52) : 3902 - 3914
  • [9] Kirchhoff-Love Shells with Arbitrary Hyperelastic Materials
    Wen, Jiahao
    Barbic, Jernej
    ACM TRANSACTIONS ON GRAPHICS, 2023, 42 (06):
  • [10] Decomposition of plate displacements via Kirchhoff-Love displacements
    Griso, Georges
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (17) : 18234 - 18257