On Hyers-Ulam stability for a class of functional equations

被引:0
|
作者
Costanza Borelli
机构
[1] Università degli Studi di Milano,Dipartimento di Matematica
关键词
39B52; 39B72; 47H15;
D O I
10.1007/BF02755447
中图分类号
学科分类号
摘要
In this paper we prove some stability theorems for functional equations of the formg[F(x, y)]=H[g(x), g(y), x, y]. As special cases we obtain well known results for Cauchy and Jensen equations and for functional equations in a single variable.
引用
收藏
页码:74 / 86
页数:12
相关论文
共 50 条
  • [1] The generalized Hyers-Ulam stability of a class of functional equations
    Grabiec, A
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 1996, 48 (3-4): : 217 - 235
  • [2] HYERS-ULAM STABILITY OF TRIGONOMETRIC FUNCTIONAL EQUATIONS
    Chang, Jeongwook
    Chung, Jaeyoung
    [J]. COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2008, 23 (04): : 567 - 575
  • [3] On Hyers-Ulam Stability of Monomial Functional Equations
    A. Gilányi
    [J]. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 1998, 68 : 321 - 328
  • [4] On Hyers-Ulam stability of monomial functional equations
    Gilanyi, A
    [J]. ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 1998, 68 (1): : 321 - 328
  • [5] Hyers-Ulam and Hyers-Ulam-Rassias Stability of a Class of Hammerstein Integral Equations
    Castro, L. P.
    Simoes, A. M.
    [J]. ICNPAA 2016 WORLD CONGRESS: 11TH INTERNATIONAL CONFERENCE ON MATHEMATICAL PROBLEMS IN ENGINEERING, AEROSPACE AND SCIENCES, 2017, 1798
  • [6] On a Generalized Hyers-Ulam Stability of Trigonometric Functional Equations
    Chung, Jaeyoung
    Chang, Jeongwook
    [J]. JOURNAL OF APPLIED MATHEMATICS, 2012,
  • [7] GENERALIZED HYERS-ULAM STABILITY OF ADDITIVE FUNCTIONAL EQUATIONS
    Kim, Hark-Mahn
    Son, EunYonug
    [J]. JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS, 2009, 16 (03): : 297 - 306
  • [8] Generalized Hyers-Ulam Stability of Trigonometric Functional Equations
    Elqorachi, Elhoucien
    Rassias, Michael Th.
    [J]. MATHEMATICS, 2018, 6 (05):
  • [9] Hyers-Ulam stability of linear functional differential equations
    Huang, Jinghao
    Li, Yongjin
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 426 (02) : 1192 - 1200
  • [10] Hyers-Ulam Stability for a Class of Quadratic Functional Equations via a Typical Form
    Kim, Chang Il
    Han, Giljun
    Shim, Seong-A.
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2013,