共 34 条
Numerical Investigation on the Hydrogen-Assisted Start-Up of Methane-Fueled, Catalytic Microreactors
被引:0
|作者:
Symeon Karagiannidis
John Mantzaras
机构:
[1] Paul Scherrer Institute (PSI),Combustion Research
来源:
关键词:
Catalytic microreactors;
Transient simulation;
Hetero-/homogeneous combustion;
Hydrogen-assisted combustion;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
The hydrogen-assisted start-up of methane-fueled, catalytic microreactors has been investigated numerically in a plane-channel configuration. Transient 2-D simulations have been performed in a platinum-coated microchannel made of either ceramic or metallic walls. Axial heat conduction in the solid wall and surface radiation heat transfer were accounted for. Simulations were performed by varying the inlet pressure, the solid wall thermal conductivity and heat capacity, and comparisons were made between fuel mixtures comprising 100% CH4 and 90% CH4–10% H2 by volume. A significant reduction in the ignition (tig) and steady-state (tst) times was evident for microreactors fed with hydrogen-containing mixtures in comparison to pure methane-fueled ones, for all pressures and reactor materials investigated, with hydrogen having a direct thermal rather than chemical impact on catalytic microreactor ignition. The positive impact of H2 addition was attenuated as the pressure (and the associated CH4 catalytic reactivity) increased. Reactors with low wall thermal conductivity (cordierite material) benefited more from hydrogen addition in the fuel stream and exhibited shorter ignition times compared to higher thermal conductivity ones (FeCr alloy) due to the creation of spatially localized hot spots that promoted catalytic ignition. At the same time, the cordierite material required shorter times to reach steady state. Microreactor emissions were impacted positively by the addition of hydrogen in the fuel stream, with a significant reduction in the cumulative methane emissions and no hydrogen breakthrough. Finally, gas-phase chemistry was found to elongate the steady-state times for both ceramic and metallic materials.
引用
收藏
页码:215 / 230
页数:15
相关论文