Energy-minimal diffeomorphisms between doubly connected Riemann surfaces

被引:3
|
作者
David Kalaj
机构
[1] University of Montenegro,Faculty of Natural Sciences and Mathematics
关键词
Primary 58E20; Secondary 30C62; 31A05;
D O I
暂无
中图分类号
学科分类号
摘要
Let M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M$$\end{document} and N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N$$\end{document} be doubly connected Riemann surfaces with boundaries and with nonvanishing conformal metrics σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document} and ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document} respectively, and assume that ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document} is a smooth metric with bounded Gauss curvature K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {K}}$$\end{document} and finite area. The paper establishes the existence of homeomorphisms between M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M$$\end{document} and N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N$$\end{document} that minimize the Dirichlet energy. Among all homeomorphismsf:M⟶ontoN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f :M{\overset{{}_{ \tiny {\mathrm{onto}} }}{\longrightarrow }} N$$\end{document}between doubly connected Riemann surfaces such thatModM⩽ModN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{Mod\,}}}M \leqslant {{\mathrm{Mod\,}}}N$$\end{document}there exists, unique up to conformal automorphisms of M, an energy-minimal diffeomorphism which is a harmonic diffeomorphism. The results improve and extend some recent results of Iwaniec et al. (Invent Math 186(3):667–707, 2011), where the authors considered bounded doubly connected domains in the complex plane w.r. to Euclidean metric.
引用
收藏
页码:465 / 494
页数:29
相关论文
共 50 条
  • [1] Energy-minimal diffeomorphisms between doubly connected Riemann surfaces
    Kalaj, David
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2014, 51 (1-2) : 465 - 494
  • [2] Lipschitz regularity of energy-minimal mappings between doubly connected Riemann surfaces
    Kalaj, David
    [J]. ANALYSIS AND MATHEMATICAL PHYSICS, 2022, 12 (05)
  • [3] Existence of energy-minimal diffeomorphisms between doubly connected domains
    Tadeusz Iwaniec
    Ngin-Tee Koh
    Leonid V. Kovalev
    Jani Onninen
    [J]. Inventiones mathematicae, 2011, 186 : 667 - 707
  • [4] Existence of energy-minimal diffeomorphisms between doubly connected domains
    Iwaniec, Tadeusz
    Koh, Ngin-Tee
    Kovalev, Leonid V.
    Onninen, Jani
    [J]. INVENTIONES MATHEMATICAE, 2011, 186 (03) : 667 - 707
  • [5] Lipschitz regularity of energy-minimal mappings between doubly connected Riemann surfaces
    David Kalaj
    [J]. Analysis and Mathematical Physics, 2022, 12
  • [6] Mapping of Least ρ-Dirichlet Energy between Doubly Connected Riemann Surfaces
    Li ZHANG
    Sheng Jin HUO
    Hui GUO
    Xiao Gao FENG
    [J]. Acta Mathematica Sinica,English Series, 2020, (06) : 663 - 672
  • [7] Mapping of Leastρ-Dirichlet Energy between Doubly Connected Riemann Surfaces
    Zhang, Li
    Huo, Sheng Jin
    Guo, Hui
    Feng, Xiao Gao
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2020, 36 (06) : 663 - 672
  • [8] Mapping of Least ρ-Dirichlet Energy between Doubly Connected Riemann Surfaces
    Li ZHANG
    Sheng Jin HUO
    Hui GUO
    Xiao Gao FENG
    [J]. Acta Mathematica Sinica, 2020, 36 (06) : 663 - 672
  • [9] Mapping of Least ρ-Dirichlet Energy between Doubly Connected Riemann Surfaces
    Li Zhang
    Sheng Jin Huo
    Hui Guo
    Xiao Gao Feng
    [J]. Acta Mathematica Sinica, English Series, 2020, 36 : 663 - 672
  • [10] Kellogg’s theorem for diffeomophic minimizers of Dirichlet energy between doubly connected Riemann surfaces
    David Kalaj
    [J]. Calculus of Variations and Partial Differential Equations, 2022, 61